Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Формула водородного соединения кремния. Соединения кремния с водородом и галогенами

Формула водородного соединения кремния. Соединения кремния с водородом и галогенами

Кремний (Si) – второй элемент основной (А) подгруппы 4 группы Периодической системы, учрежденной Дмитрием Ивановичем Менделеевым. Кремний очень распространен в природе, поэтому он занимает второе (после кислорода) место по распространенности. Так, без кремния и его соединений не существовало бы Земной коры, которая более чем на четверть состоит из соединений этого химического элемента. В чем же особенности кремния? Каковы формулы его соединений и их применение? Какие важнейшие вещества имеют в своем составе кремний? Попробуем разобраться.

Элемент кремний и его свойства

Кремний существует в природе в нескольких аллотропных модификациях – наиболее распространенными являются кремний в кристаллическом виде и аморфный кремний. Рассмотрим каждую из данных модификаций в отдельности.

Кристаллический кремний

Кремний в данной модификации является темно-серым достаточно твердым и хрупким веществом со стальным блеском. Такой кремний является полупроводником; его полезное свойство заключается в том, что, в отличие от металлов, его электропроводность увеличивается при повышении температуры. Температура плавления такого кремния составляет 1415 °С. К тому же, кристаллический кремний не способен растворяться в воде и различных кислотах.

Применение кремния и его соединений в кристаллической модификации невероятно многообразно. Например, кристаллический кремний входит в состав солнечных батарей, устанавливаемых на космических кораблях и крышах домов. Кремний является полупроводником и способен преобразовывать солнечную энергию в электрическую.

Помимо солнечных батарей, кристаллический кремний используется для создания многих электронных приборов и кремнистых сталей.

Аморфный кремний


Аморфный кремний – бурый/темно-коричневый порошок алмазоподобной структуры. В отличие от кристаллического кремния, данная аллотропная модификация элемента не имеет строго упорядоченной кристаллической решетки. Несмотря на то, что аморфный кремний плавится при температуре, приблизительно равной 1400 °С, он является гораздо более активным по сравнению с кристаллическим. Аморфный кремний не проводит ток и имеет плотность около 2 г/см³.

Такой кремний чаще всего применяется в пищевой промышленности и при изготовлении лекарственных препаратов.

Химические свойства кремния

    Основное химическое свойство кремния – горение в кислороде, в результате которого образуется крайне распространенное соединение – оксид кремния:

Si + O2 → SiO2 (при температуре).

    При нагревании кремний как неметалл образует соединения с различными металлами. Такие соединения называются силицидами. Например:

2Ca + Si → Ca2Si (при температуре).

    Силициды, в свою очередь, без затруднений разлагаются при помощи воды или некоторых кислот. В результате данной реакции образуется особое водородное соединение кремния – газ силан (SiH4):

Mg2Si + 4HCl → 2MgCl2 + SiH4.

    Кремний также способен взаимодействовать с фтором (при нормальных условиях):

Si + 2F2 → SiF4.

    А при нагревании кремний взаимодействует с другими неметаллами:

Si + 2Cl2 → SiCl4 (400–600°).

3Si + 2N2 → Si3N4 (1000°).

Si + C → SiC (2000°).

    Также кремний, взаимодействуя со щелочами и водой, образует соли, называемые силикатами, и газ водород:

Si + 2KOH + H2O → K2SiO3 + H2.

Однако большинство химических свойств данного элемента мы разберем, рассматривая кремний и его соединения, так как именно они являются основными веществами, на которых основано применение и взаимодействие кремния с другими химическими элементами. Итак, какие же соединения кремния являются наиболее распространенными?

Соединения кремния


Ранее мы выяснили, каким элементом является кремний и какими свойствами он обладает. Теперь рассмотрим формулы соединений кремния.

При участии кремния образуется огромное количество различных соединений. Первое место по распространенности занимают кислородные соединения кремния. К данному разряду относится SiO2 и нерастворимая кремниевая кислота.

Кислотный остаток кремниевой кислоты образует различные силикаты (например, CaSiO3 или Al2O3 SiO2). В таких солях и представленных выше соединениях кремния с кислородом элемент имеет типичную для него степень окисления +4.

Также достаточно распространены соли кремния – силициды (Mg2Si, NaSi, CoSi) и соединения кремния с водородом (например, газ силан). Силан, как известно, самовоспламеняется на воздухе с возникновением ослепительной вспышки, а силициды легко разлагаются как при помощи воды, так и различных кислот.

Рассмотрим поподробнее кремний и его соединения, считающиеся самыми распространенными.

Диоксид кремния

Другое название данного оксида – кремнезем. Это твердое и тугоплавкое вещество, которое не растворяется в воде и кислотах и имеет атомную кристаллическую решетку. В природе оксид кремния образует такие минералы и драгоценные камни, как кварц, аметист, опал, агат, халцедон, яшма, кремень и некоторые другие.

Стоит отметить, что именно из кремния первобытные люди изготавливали свои орудия труда и охоты. Кремень положил начало так называемому каменному веку благодаря его повсеместной доступности и способности образовывать острые режущие края при сколе.

Именно оксид кремния делает прочными стебли таких растений, как камыши, тростники и хвощи, листья осоки и стебли злаков. В защитных наружных покровах некоторых животных также содержится кремнезем.

К тому же, он лежит в основе силикатного клея, благодаря которому создается силиконовый герметик и силиконовый каучук.

Химические свойства оксида кремния

Диоксид кремния взаимодействует с огромным количеством химических элементов – как металлов, так и неметаллов. Например:

    При высоких температурах кремнезем взаимодействует со щелочами, образуя при этом соли:

SiO2 + 2KOH → K2SiO3 + H2O (при температуре).

    Как типичный кислотный оксид, данное соединение дает силикаты в результате взаимодействия с оксидами различных металлов:

SiO2 + CaO → CaSiO3 (при температуре).

    Или с карбонатными солями:

SiO2 + K2CO3 → K2SiO3 + CO2 (при температуре).

    Одно из важнейших химических свойств диоксида кремния – это возможность получения из него чистого кремния. Это можно осуществить двумя способами – при взаимодействии диоксида с магнием или углеродом:

SiO2 + 2Mg → 2MgO + Si (при температуре).

SiO2 + 2C → Si + 2CO (при температуре)

Кремниевая кислота


Кремниевая кислота является очень слабой. Она нерастворима в воде и при реакциях образует студенистый осадок, который иногда способен заполнить весь объем раствора. Когда данная смесь высыхает, можно увидеть образовавшийся силикагель, который применяется как адсорбент (поглотитель других веществ).

Наиболее доступный и распространенный способ получения кремниевой кислоты можно выразить при помощи формулы:

K2SiO3 + 2HCl → 2KCl + H2SiO3↓.

Силициды

Рассматривая кремний и его соединения, очень важно сказать о таких его солях, как силициды. Такие соединения кремний образует с металлами, приобретая, как правило, при этом степень окисления -4. Однако такие металлы, как ртуть, цинк, бериллий, золото и серебро не способны взаимодействовать с кремнием и образовывать силициды.

Наиболее распространенными силицидами являются Mg2Si, Ca2Si, NaSi и некоторые другие.

Силикаты

Такие соединения, как силикаты занимают второе место по распространенности после диоксида кремния. Соли-силикаты считаются достаточно сложными веществами, так как имеют непростую структуру строения, а также они входят в состав большинства минералов и горных пород.

К наиболее распространенным в природе силикатам – алюмосиликатам – относят гранит, слюды, различные виды глин. Также известным силикатом является асбест, из которого изготавливаются огнестойкие ткани.

Применение кремния


В первую очередь, кремний применяется для получения материалов-полупроводников и кислотоупорных сплавов. Карбид кремния (SiC) часто используют для затачивания резцов станков и шлифовки ценных камней.

Из расплавленного кварца изготавливается устойчивую и крепкую кварцевую посуду.

Соединения кремния лежат в основе производства стекла и цемента.


Стекла отличаются друг от друга по составу, в котором обязательно присутствует кремний. Например, помимо оконных, существуют тугоплавкие, хрустальные, кварцевые, цветные, фотохромные, оптические, зеркальные и другие стекла.

При смешивании цемента с водой образуется особое вещество – цементный раствор, из которого впоследствии получают такой строительный материал, как бетон.

Производством этих веществ занимается силикатная промышленность. Помимо стекла и цемента, в силикатной промышленности получают кирпич, фарфор, фаянс и различные изделия из них.

Заключение

Итак, мы выяснили, что кремний является важнейшим химическим элементом, широко распространенным в природе. Кремний применяется при строительстве и художественной деятельности, а также незаменим для живых организмов. Многие вещества, начиная от простого стекла и заканчивая ценнейшим фарфором, имеют в своем составе кремний и его соединения.

Изучение химии позволяет познать окружающий наш мир и понять, что не все вокруг, даже самое великолепное и дорогое, настолько таинственно и загадочно, как могло показаться. Желаем успехов в научном познании и изучении такой прекрасной науки, как химия!

Непосредственно с водородом кремний не взаимодействует. Только при действии воды или кислоты на силициды образуется смесь кремневодородов, называемых силанами : газообразных и жидких, напоминающих предельные углеводороды, Si n H 2 n +2 . В отличие от углеводородов, силаны более реакционноспособны в окислительно-восстановительных реакциях, в которых они всегда проявляют свойства восстановителей за счет Si -4:

SiH 4 + O 2 = SiO 2 + 2H 2 O

Соединения кремния с кислородом.

Кремний образует с кислородом один оксид SiO 2 . Твердое тугоплавкое вещество, нерастворимое в воде и кислотах, за исключением плавиковой кислоты (HF), в которой оксид кремния образует газообразный тетрафторид кремния:

SiO 2 + 4HF = SiF 4 + 2H 2 O

Нерастворимый в воде оксид кремния (IV) обладает слабыми кислотными свойствами, поэтому он взаимодействует с основными оксидами и основаниями, но только при высоких температурах:

Na 2 O + SiO 2 = Na 2 SiO 3 2NaOH + SiO 2 = Na 2 SiO 3 + H 2 O

Соответствующая оксиду SiO 2 кремниевая кислота может быть получена в водном растворе только из силикатов при действии на них более сильных кислот:

Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl

Na 2 SiO 3 + CO 2 + H 2 O = H 2 SiO 3 ↓ + Na 2 CO 3

Кремниевая кислота – очень слабая кислота, и поэтому растворимые в воде силикаты щелочных Ме подвергаются сильному гидролизу по аниону, образуя щелочную среду:

SiO 3 2- + H-OH ↔ HSiO 3 - + OH -

HSiO 3 - + H-OH ↔ H 2 SiO 3 + OH -

В окислительно-восстановительных реакциях оксид кремния (IV) является очень слабым окислителем и может восстанавливаться только сильными восстановителями, такими как Mg или Ca и то при высоких температурах (>1000 0 С):

2Mg + SiO 2 = Si + 2MgO

Вопросы для контроля

1. Охарактеризуйте положение кремния в периодической системе Д.И.Менделеева. какие степени окисления характерны для кремния.

2. Какие вы знаете соединения кремния с галогенами, водородом, кислородом, азотом, металлами? Напишите формулы этих соединений. Как они могут быть получены?

3. Чем отличается оксид кремния (IV) от других кислотных оксидов?

Задачи и упражнения для самостоятельной работы

1. Сверхчистый кремний для транзисторов получают путем превращения химически чистого кремния в бромид кремния (IV), который затем восстанавливают водородом. Напишите уравнения соответствующих реакций.

2. Почему не растворяющийся в концентрированной азотной кислоте кремний растворяется в смеси HNO 3 и HF? Какую роль играет HF в такой смеси?

3. Составьте уравнения реакций между: а) кремнеземом и содой; б) кремнеземом и гидроксидом бария; в) силикатом калия и фтороводородной кислотой.

4. Каков характер среды водного раствора силиката калия? Подтвердите ответ молекулярным и ионными уравнениями реакции, происходящей в этом растворе.

5. Составьте уравнения реакций, с помощью которых можно осуществить следующие превращения:

а) SiO 2 → Si → Mg 2 Si → SiH 4 → SiO 2 → Na 2 SiO 3 → H 2 SiO 3 ;

б) SiCl 4 → Si → K 2 SiO 3 → H 2 SiO 3 → SiO 2 → стекло.

6. В трех пробирках имеются растворы силиката натрия, карбоната натрия и сульфида калия. С помощью какого одного реактива можно определить каждый из указанных растворов? Приведите уравнения соответствующих реакций.

7. Имеется смесь кремния, графита и карбоната кальция. Найдите ее количественный состав, если известно, что при обработке 34 г смеси раствором NaOH получено 22,4 л газа (н.у.), а при обработке такой же порции смеси соляной кислотой получено 2,24 л газа (н.у.).

8. Имеется смесь кремния, алюминия и карбоната кальция. Каков ее количественный состав, если известно, что при обработке смеси избытком раствора щелочи выделяется 17,92 л газа (н.у.), а при обработке такой же порции смеси соляной кислотой – также 17,92 л газа, пропускание которого через раствор гидроксида кальция образовалось 16,2 г Са(НСО 3) 2 ?


ОТВЕТЫ К ЗАДАЧАМ

Хлорoсиланы - важнейшие реагенты химической промышленности, многие из которых получают с помощью хлорирования связи кремний-водород (Si-H). Такое хлорирование, как правило, достигается путем использование токсичных и/или дорогостоящих металлсодержащих реагентов. Исследователи из Тель-Авивского университета нашли новый, простой, селективный и высокоэффективный каталитический способ хлорирования связей Si-H без использования металлов. В качестве катализатора используется соединение бора триc(пентафторфенил)боран B(C 6 F 5) 3 , а в качестве хлорирующего агента - соляная кислота HCl. Механизм реакции был предложен на основе опытов соревнующихся реакций и квантово-механических расчетов. Работа была опубликована в Angewandte Chemie International Edition - одном из наиболее влиятельных химических журналов в мире.

Xлоросиланы - вещества со связью кремний-хлор с общей формулой R 3 Si-Cl (где R - любая органическая группа, водород или другой хлор) - используются во многих отраслях органической химии: синтезе лекарств, полимеров и множества других веществ. Например, почти ни один мультистадийный органический синтез без них не обходится, так как с их помощью защищают многие активные группы (см. также Protecting group). Eсли на молекуле есть несколько активных групп, можно одну из них селективно (не затрагивая другие) заблокировать кремниевым щитом (silyl ether) с помощью соответствующего хлоросилана, затем провести желаемые реакции с другими реактивными группами, а на следующей стадии снять кремниевую защиту, освободив защищеннyю группу для дальнейших реакций. Снимается кремниевая защитная группа довольно легко, при этом не затрагиваются другие части молекулы, поэтому такая защита очень популярна. Для защиты разных групп нужны разные условия. Более того, обычно одни и те же группы, помещенные в разное химическое окружение, будут реагировать по-разному. Поэтому химикам требуются хлоросиланы с разной реактивностью, или, иначе говоря, с разнообразными группами на атоме кремния.

Один из наиболее популярных методов получения хлорсиланов - хлорирование связи кремний-водород (Si-H). Классические (в том числе коммерческие) методы хлорирования этих связей можно условно разделить на стехиометрическиe (на каждый моль хлорируемой связи нужнo соответствующее количество молей активирующего реагента) и каталитические (катализатор активирует молекулу и после ее хлорирования возвращается в исходное состояние, чтобы активировать следующую молекулу). Cтехиометрическoe xлорирование связей Si-H осуществляется посредством солей металлов в сочетании с опасными источниками хлора, такими как токсичные хлориды олова, ядовитый элементный хлор и канцерогенный тетрахлорoметан. Известные методы каталитическогo хлорирования этих связей нетоксичными источниками хлора (такими как соляная кислота) связаны с использованием дорогих катализаторов - переходных металлов, например, палладия. Напрямую, без активации, силаны с соляной кислотой не реагируют.

Несмотря на то что кремний в таблице Менделеева находится прямо под углеродом, иx химия сильно различается (см., например, Впервые получены структуры контактной и сольватноразделённой ионных пар силенил-литиевого соединения «Элементы», 23.09.2016). В частности, связь водорода с кремнием слабее, чем с углеродом, и поляризована так, что водород отрицательно заряжен, и может вести себя как псевдогалоген. Эту особенность использовали ученые из Тель-Авивского университета, чтобы активировать связь Si-H с помощью триc(пентафторфенил)борана B(C 6 F 5) 3 . B(C 6 F 5) 3 - нетоксичное и относительно недорогое (в сравнении с переходными металлами) соединение бора с тремя пентафторфенильными кольцами. Фторфенилы оттягивают электронную плотность с атома бора, поэтому бор взаимодействyeт с отрицательно заряженным атомом водорода на кремнии и ослабляет связь Si-H, позволяя xлору из соляной кислоты (HCl) заменить водород. Из двух атомов водорода (H − от кремния и H + из соляной кислоты) получается молекулярный водород H 2 (рис. 1).

Отдельный пример реакции хлорирования триэтилсилана показан на рис. 3. Соляную кислоту генерируют путем прикапывания концентрированного раствора серной кислоты на поваренную соль. Образуется газообразная соляная кислота, которая по трубке подается в перемешиваемый толуольный раствор хлоросилана и катализатора. Используя всего лишь одну молекулy B(C 6 F 5) 3 к 100 молекулам Et 3 SiH (то есть один мольный процент, 1 mol%) при избытке HCl реакция идет до конца за 15 минут.

С помощью квантовомеханических расчетов авторы получили модель структуры переходного состояния реакции (рис. 4) и энергию, которая нужна для прохода этой реакции в газовой фазе (25,5 ккал/моль).

Просто открыть новую реакцию недостаточно для публикации в хорошем журнале. Надо еще как минимум продемонстрировать возможность ее широкого применения и подтвердить предложенный механизм дополнительными экспериментами и/или теоретическими расчетами. Но и этого может не хватить. Для совсем хорошей публикации желательно продемонстрировать особенность реакции, которой нет у уже известных и использующихся реакций.

Для начала авторы прохлорировали своим методом, используя как B(C 6 F 5) 3 так и его эфират Et 2 O·B(C 6 F 5) 3 , несколько силанов с разнообразными заместителями R - от органокремниевого (tBuMe 2 Si) до силоксидного (Et 3 SiO): Me 2 (tBuMe 2 Si)SiH, Ph 2 (Et 3 SiO)SiH, Me 2 SiClH, Ph 2 SiClH, Ph 2 SiH 2 , PhMeSiH 2 . Также им удалось продемонстрировать постадийное хлорирование силанов с двумя водородами Ph 2 SiH 2 , PhMeSiH 2 , используя различные концентрации катализатора (от 1 до 10 mol%) и варьируя время реакции.

На данном этапе помимо самой реакции никаких необычных результатов обнаружено не было. Тогда авторы проверили хлорирование более реактивного силана с тремя водородами, PhSiH 3 . Тут стоит заметить, что постадийное хлорирование PhSiH 3 - задача непростая, так как реакция может легко проскочить стадию монохлорирования (PhSiClH 2) к двойному хлорированию (PhSiCl 2 H). Здесь авторов oжидал приятный сюрприз. При использовании 10 mol% B(C 6 F 5) 3 за 10 минут реакция проскочила, дав на выходе 87% PhSiCl 2 H и 13% PhSiClH 2 . Однако, при использовании в качестве катализатора эфирата Et 2 O·B(C 6 F 5) 3 в точно таких же условиях (10 mol%, 10 минут) отношение продуктов получилось почти противоположным: 16% PhSiCl 2 H и 84% PhSiClH 2 (реакции 1 и 2 в таблице). Снизив концентрацию катализатора в 10 раз, удалось достичь эксклюзивного получения PhSiClH 2 в одну стадию (реакция 4 в таблице). Двойное хлорированиe c помощью эфирата не происходит целиком даже по истечении 1000 минут (реакция 6 в таблице).

Почему же реакция с эфиратом так отличается от исходной? Ведь эфират использовался только из-за удобства - его легче выделять, и он стабильнее на воздухе, чем безэфирный аналог. В растворе молекула диэтилэфира (Et 2 O) отвязывается от бора и тот должен по идее вести себя идентично исходному катализатору. Возможно сама молекула диэтилэфира как-то участвует в реакции? Подтверждение этой гипотезе было получено анализом раствора после реакции - оказалось что там присутствует этан C 2 H 6 , который мог появиться в растворе только путем распада молекулы диэтилэфира. Тогда исследователи провели стехиометрическую (в соотношении 1:1) реакцию PhSiH 3 с Et 2 O·B(C 6 F 5) без добавления HCl и в качестве продуктов получили фенил(этокси)силан и этан. Диэтилэфир действительно распался (рис. 5).

Судя по всему это и есть первая стадия всех реакций, катализируемых эфиратом. На второй HCl реагирует с этоксисиланом и выделяется этанол, который присоединяется обратно к бору вместо диэтилэфира, продолжая каталитическую цепочку (рис. 6). Авторы предположили, что второе хлорирование замедляется, так как этанол реагирует с уже хлорированной молекулой медленнее чем с нехлорированной. Это предположение было доказано отдельным экспериментом и с помощью квантовомеханических расчетов энергий всех стадий реакции с двумя типами катализаторов.

Замена катализаторов на основе драгоценных металлов в индустрии очень важна ввиду дороговизны последних, ограниченности ресурсов и токсичности. Трис(пентафторфенил)боран всё больше набирает популярность у химиков, занимающихся катализом, и скорее всего мы увидим еще много интересных реакций с его участием.

Углерод способен образовывать несколько аллотропных модификаций. Это алмаз (наиболее инертная аллотропная модификация), графит, фуллерен и карбин.

Древесный уголь и сажа представляют собой аморфный углерод. Углерод в таком состоянии не имеет упорядоченной структуры и фактически состоит из мельчайших фрагментов слоев графита. Аморфный углерод, обработанный горячим водяным паром, называют активированным углем. 1 грамм активированного угля из-за наличия в нем множества пор имеет общую поверхность более трехсот квадратных метров! Благодаря своей способности поглощать различные вещества активированный уголь находит широкое применение как наполнитель фильтров, а также как энтеросорбент при различных видах отравлений.

С химической точки зрения аморфный углерод является наиболее активной его формой, графит проявляет среднюю активность, а алмаз является крайне инертным веществом. По этой причине, рассматриваемые ниже химические свойства углерода следует прежде всего относить к аморфному углероду.

Восстановительные свойства углерода

Как восстановитель углерод реагирует с такими неметаллами как, например, кислород, галогены, сера.

В зависимости от избытка или недостатка кислорода при горении угля возможно образование угарного газа CO или углекислого газа CO 2:

При взаимодействии углерода со фтором образуется тетрафторид углерода:

При нагревании углерода с серой образуется сероуглерод CS 2:

Углерод способен восстанавливать металлы после алюминия в ряду активности из их оксидов. Например:

Также углерод реагирует и с оксидами активных металлов, однако в этом случае наблюдается, как правило, не восстановление металла, а образование его карбида:

Взаимодействие углерода с оксидами неметаллов

Углерод вступает в реакцию сопропорционирования с углекислым газом CO 2:

Одним из наиболее важных с промышленной точки зрения процессов является так называемая паровая конверсия угля . Процесс проводят, пропуская водяной пар через раскаленный уголь. При этом протекает следующая реакция:

При высокой температуре углерод способен восстанавливать даже такое инертное соединение как диоксид кремния. При этом в зависимости от условия возможно образование кремния или карбида кремния (карборунда ):

Также углерод как восстановитель реагирует с кислотами окислителями, в частности, концентрированными серной и азотной кислотами:

Окислительные свойства углерода

Химический элемент углерод не отличается высокой электроотрицательностью, поэтому образуемые им простые вещества редко проявляют окислительные свойства по отношению к другим неметаллам.

Примером таких реакций является взаимодействие аморфного углерода с водородом при нагревании в присутствии катализатора:

а также с кремнием при температуре 1200-1300 о С:

Окислительные свойства углерод проявляет по отношению к металлам. Углерод способен реагировать с активными металлами и некоторыми металлами средней активности. Реакции протекают при нагревании:

Карбиды активных металлов гидролизуются водой:

а также растворами кислот-неокислителей:

При этом образуются углеводороды, содержащие углерод в той же степени окисления, что и в исходном карбиде.

Химические свойства кремния

Кремний может существовать, как и углерод в кристаллическом и аморфном состоянии и, также, как и в случае углерода, аморфный кремний существенно более химически активен, чем кристаллический.

Иногда аморфный и кристаллический кремний, называют его аллотропными модификациями, что, строго говоря, не совсем верно. Аморфный кремний представляет собой по сути конгломерат беспорядочно расположенных друг относительно друга мельчайших частиц кристаллического кремния.

Взаимодействие кремния с простыми веществами

неметаллами

При обычных условиях кремний ввиду своей инертности реагирует только со фтором:

С хлором, бромом и йодом кремний реагирует только при нагревании. При этом характерно, что в зависимости от активности галогена, требуется и соответственно различная температура:

Так с хлором реакция протекает при 340-420 о С:

С бромом – 620-700 о С:

С йодом – 750-810 о С:

Реакция кремния с кислородом протекает, однако требует очень сильного нагревания (1200-1300 о С) ввиду того, что прочная оксидная пленка затрудняет взаимодействие:

При температуре 1200-1500 о С кремний медленно взаимодействует с углеродом в виде графита с образованием карборунда SiC – вещества с атомной кристаллической решеткой подобной алмазу и почти не уступающего ему в прочности:

С водородом кремний не реагирует.

металлами

Ввиду своей низкой электроотрицательности кремний может проявлять окислительные свойства лишь по отношению к металлам. Из металлов кремний реагирует с активными (щелочными и щелочноземельными), а также многими металлами средней активности. В результате такого взаимодействия образуются силициды:

Взаимодействие кремния со сложными веществами

С водой кремний не реагирует даже при кипячении, однако аморфный кремний взаимодействует с перегретым водяным паром при температуре около 400-500 о С. При этом образуется водород и диоксид кремния:

Из всех кислот кремний (в аморфном состоянии) реагирует только с концентрированной плавиковой кислотой:

Кремний растворяется в концентрированных растворах щелочей. Реакция сопровождается выделением водорода.

Одним из самых востребованных в технике и промышленности элементов является кремний. Этому он обязан своими необычными свойствами. Сегодня существует масса различных соединений данного элемента, которые играют важную роль в синтезе и создании технических продуктов, посуды, стекла, оборудования, строительных и отделочных материалов, ювелирных украшений и в прочих отраслях промышленности.

Общая характеристика кремния

Если рассматривать положение кремния в периодической системе, то можно сказать так:

  1. Располагается в IV группе главной подгруппы.
  2. Порядковый номер 14.
  3. Атомная масса 28,086.
  4. Химический символ Si.
  5. Название - кремний, или на латыни - silicium.
  6. Электронная конфигурация внешнего слоя 4е:2е:8е.

Кристаллическая решетка кремния подобна решетке алмаза. В узлах расположены атомы, тип ее - кубическая гранецентрированная. Однако вследствие большей длины связи физические свойства кремния сильно отличаются от свойств аллотропной модификации углерода.

Физические и химические свойства

Еще несколько вариаций диоксида кремния:

  • кварц;
  • речной и ;
  • кремень;
  • полевые шпаты.

Применение кремния в таких видах реализуется в строительных работах, технике, радиоэлектронике, химической отрасли, металлургии. Все вместе перечисленные оксиды относятся к единому веществу - кремнезему.

Карбид кремния и его применение

Кремний и его соединения - это и настоящего. Одним из таких материалов является карборунд или карбид данного элемента. Химическая формула SiC. Встречается в природе в виде минерала муассанита.

В чистом виде соединение углерода и кремния - это красивые прозрачные кристаллы, напоминающие алмазные структуры. Однако в технических целях используются окрашенные в зеленый и черный цвета вещества.

Основные характеристики данного вещества, позволяющие использовать его в металлургии, технике, химической промышленности, следующие:

  • полупроводник широкозонный;
  • очень высокая степень прочности (7 по шкале Мооса);
  • устойчив к действию высоких температур;
  • отличная электроустойчивость и теплопроводность.

Все это позволяет использовать карборунд в качестве абразивного материала в металлургии и химических синтезах. А также на его основе изготавливать светодиоды широкого спектра действия, детали для стекловарочных печей, сопла, факелы, ювелирные украшения (муассанит ценится выше фианита).

Силан и его значение

Водородное соединение кремния имеет название силан и не может быть получено прямым синтезом из исходных веществ. Для его получения используют силициды различных металлов, которые подвергаются обработке кислотами. В результате выделяется газообразный силан и формируется соль металла.

Интересно то, что рассматриваемое соединение никогда не образуется в одиночестве. Всегда в результате реакции получается смесь моно-, ди- и трисилана, в которых атомы кремния соединены между собой в цепочки.

По своим свойствам эти соединения - сильные восстановители. Сами при этом легко окисляются кислородом, иногда со взрывом. С галогенами реакции бурные всегда, с большим выбросом энергии.

Области применения силанов следующие:

  1. Реакции органических синтезов, в результате которых образуются важные кремнийорганические соединения - силиконы, резины, герметики, смазки, эмульсии и прочие.
  2. Микроэлектроника (жидкокристаллические мониторы, интегральные технические схемы и прочее).
  3. Получение сверхчистого поликремния.
  4. Стоматология при протезировании.

Таким образом, значение силанов в современном мире высоко.

Кремниевая кислота и силикаты

Гидроксид рассматриваемого элемента - это разные кремниевые кислоты. Выделяют:

  • мета;
  • орто;
  • поликремниевые и другие кислоты.

Все их объединяют общие свойства - крайняя неустойчивость в свободном состоянии. Они легко разлагаются под действием температуры. При обычных условиях существуют недолго, превращаясь сначала в золь, а потом в гель. После высыхания такие структуры называют силикагелями. Они используются в качестве адсорбентов в фильтрах.

Важными, с точки зрения промышленности, являются соли кремниевых кислот - силикаты. Они лежат в основе получения таких веществ, как:

  • стекло;
  • бетон;
  • цемент;
  • цеолит;
  • каолин;
  • фарфор;
  • фаянс;
  • хрусталь;
  • керамика.

Силикаты щелочных металлов - растворимы, всех остальных - нет. Поэтому силикат натрия и калия называют жидким стеклом. Обычный канцелярский клей - это и есть натриевая соль кремниевой кислоты.

Но самыми интересными соединениями являются все же стекла. Каких только вариантов этого вещества ни придумали! Сегодня получают цветные, оптические, матовые варианты. Стеклянная посуда поражает своим великолепием и разнообразием. При добавлении определенных оксидов металлов и неметаллов в смесь можно получать самые разные типы стекла. Иногда даже одинаковый состав, но различное процентное содержание компонентов приводит к различию в свойствах вещества. Примером могут служить фарфор и фаянс, формула которых SiO 2 *AL 2 O 3 *K 2 O.

Это форма особо чистого продукта, состав которого описывается как диоксид кремния.

Открытия в области соединений кремния

За последние несколько лет исследований было доказано, что кремний и его соединения - важнейшие участники нормального состояния живых организмов. С недостатком или избытком данного элемента связаны такие заболевания, как:

  • туберкулез;
  • артриты;
  • катаракта;
  • проказа;
  • дизентерия;
  • ревматизм;
  • гепатит и другие.

Сами процессы старения организма также связаны с количественным содержанием кремния. Многочисленные опыты на млекопитающих животных доказали, что при недостатке элемента возникают инфаркты, инсульты, рак и активизируется вирус гепатита.