Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Как производится расчёт фермы для навеса? Основы расчета и сварки фермы из профильной трубы Расчет плоской фермы примеры.

Как производится расчёт фермы для навеса? Основы расчета и сварки фермы из профильной трубы Расчет плоской фермы примеры.

Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.

Общая методология расчёта

Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.

Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.

Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс

Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.

Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный

Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы . Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.

Определение сочетанных воздействий и реакции опоры

Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.

Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие

На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.

Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:

  • 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R 2 · 6 — уравнение равновесия моментов относительно узла а , где 6 м — длина плеча)
  • R 2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг

Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:

  • R 1 + R 2 = 100 + 200 + 200 + 200 + 100
  • R1 = 800 - 400 = 400 кг

Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.

Дифференциальный расчёт усилий

Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.

Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.

Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.

Узел b

  • -100 + S 1 = 0
  • S 1 = 100 кг

Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.

Узел a

  • -100 + 400 - sin(33,69) · S 3 = 0 — уравнение равновесия на ось у
  • S 3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
  • -S 3 · cos(33,69) + S 4 = 0 — уравнение равновесия на ось х
  • S 4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут

Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.

Определение сечения элементов

Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.

где: F тр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; R y γ с

Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.

где: F тр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); R y — расчётное сопротивление материала; γ с — коэффициент условий работы.

Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.

где: i x — радиус инерции сечения; J x — осевой момент инерции; F тр — площадь сечения.

Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.

где: l x — расчётная длина в плоскости фермы; i x — минимальный радиус инерции сечения по оси x; l y — расчётная длина из плоскости фермы; i y — минимальный радиус инерции сечения по оси y.

Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.

Изготовление деталей для фермы

Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.

Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.

Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.

Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.

Сборка на метизах или сваривание?

В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.

Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.

Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.

2.6.1. Общие понятия.

Плоская стержневая система, которая после включений шарниров во все узлы остается геометрически неизменяемой называется фермой.

Примеры ферм показаны на рис.2.37..

В реальных стержневых конструкциях, которые подходят под определение “ферма”, стержни в узлах соединены не шарнирами, а балками, заклепками, сваркой или замоналичены (в железобетонных конструкциях). Тем не менее, в расчетных схемах таких конструкций могут вводится в узлы шарниры, но при условии, что

· стержни являются идеально прямыми;

· оси стержней пересекаются в центре узла;

· сосредоточенные силы приложены только к узлам;

· размеры поперечных сечений стержней значительно меньше их длины.

Рис.2.37.. Статически определимые плоские фермы.

При этих условиях стержни фермы работают только на растяжение или сжатие, в них возникают только продольные силы .

Это обстоятельство существенно упрощает расчет стержневой системы и позволяет получать результаты с достаточной степенью точности.

Для определения усилий в стержнях фермы методом сечений необходимо:

1) Сечение проводить таким образом, чтобы оно

· пересекало ось стержня, в котором определяется усилие;

· пересекало по возможности не более трех стержней;

· разделяло ферму на две части.

2) Продольные усилия в стержнях направлять в положительном направлении, т.е. от узла.

3) Выбирать такие уравнения равновесия для части фермы, которые включали бы лишь одно искомое усилие. Такими уравнениями являются, например,

· сумма моментов относительно точки, в которой пересекаются лини действия усилий в стержнях ферм, разрезанных сечением; такие точки принято называть моментными ;

· сумма проекций сил на вертикальную ось для раскосов ферм с параллельными поясами.

4) Для определения усилий в стойках вырезать узлы, если в них сходится не более трех стержней.

5) Для упрощения определения плеч внутренних усилий относительно моментной точки при составлении уравнений моментов при необходимости заменять искомые усилия их проекциями на взаимно перпендикулярные оси.

2.6.2. Определение усилий в стержнях фермы.

Для определения усилий в стержнях фермы необходимо:

· определить реакции опор;

· методом сечений определить требуемые усилия;

· произвести проверку полученных результатов.

Реакции опор в простых балочных фермах, показанных на рис.2.37, определяются также как в однопролетных балках с помощью уравнений вида

Для проверки реакций опор используем уравнение

Рассмотрим алгоритм расчета на конкретном примере.

Дана расчетная схема фермы (рис.2.38).

Требуется определить усилия в стержнях 4-6, 3-6, 3-5, 3-4, 7-8.



Решение задачи.

1) Определяем реакции опор .

Для этого используем уравнение равновесия:

Записываем уравнения, используя принятое правило знаков:

Решая уравнения, находим

Проверяем реакции опор по уравнению .

2) Определяем усилия в стержнях фермы .

а) Усилия в стержнях 4-6, 3-6, 3-5.

Для определения усилий в указанных стержнях разрезаем ферму сечением а-а на две части и рассматриваем равновесие левой части фермы (рис.2.39.

К левой части фермы прикладываем реакцию опоры , силу , действующую в узле 4, и искомые усилия в стержнях фермы , , . Эти усилия направляем вдоль соответствующих стержней в сторону от узла, то есть в положительном направлении.

Для определения усилий , , можно использовать следующую систему уравнений:

Но в этом случае получим совместную систему уравнений, в которые будут входить все искомые усилия.

Для упрощения решения задачи необходимо использовать уравнения равновесия, в которые входило бы только одно неизвестное.

Для определения усилия таким уравнением является

т. е. сумма моментов относительно узла 3, в котором пересекаются линии действия усилий и , так как моменты этих сил относительно узла 3 равны нулю. Для усилия таким уравнением является

т. е. сумма моментов относительно узла 6, в котором пересекаются линии действия усилий и .

Для определения усилия следует использовать уравнение суммы моментов относительно точки О, в которой пересекаются линии действия усилий и , т. е.

При записи указанных уравнений возникают математические трудности по определению плеч сил относительно соответствующих точек. Для упрощения решения этой задачи рекомендуется разложить искомое усилие по осям Х, Y и использовать проекции усилия при записи уравнения равновесия.

Покажем это на примере усилия (рис.2.40).

Запишем уравнение :

Решая уравнение, получаем:

В данном примере проекция усилия на ось Х имеет момент относительно точки О равный нулю, так как линия её действия проходит через точку О.

3) Определяем усилие в стержне 3-4.

Для определения усилия вырезаем в узел 4 фермы сечением b-b (рис.2.41.а).

4) Определяем усилие в стержне 7-8.

Вырезаем узел 8 сечение с-с (рис.2.41.б). Составляем два уравнения равновесия

Для определения усилия имеем два уравнения с тремя неизвестными. Следовательно, одно из этих неизвестных ( или ) должно быть определено предварительно.

Если усилие известно, то для определения усилия можно использовать уравнение:

сумма проекций сил, приложенных в узле, на ось x, перпендикулярную линии действия силы .

Необходимо отметить, что усилия в стержнях фермы можно определять, рассматривая поочередно равновесие её узлов и составляя для каждого узла по два уравнения

Начинать необходимо с узла, в котором сходятся только два стержня, а затем последовательно рассматривать узлы, в которых только два неизвестных усилия. Рассмотрим пример (рис.2.42).

1) Рассматриваем узел 1, в котором сходятся только два стержня. Составляем и решаем уравнения

2) Рассматриваем узел 2, в котором сходятся 3 стержня, но известно усилие :

Решая систему уравнений, находим:

Затем рассматривается узел 4 и т. д.

Такой способ определения усилий в стержнях фермы имеет следующие недостатки:

· ошибка, допущенная в процессе расчета, распространяется на последующие вычисления;

· он не рационален для определения усилий лишь в отдельных стержнях фермы.

К достоинствам способа относится возможность применения при составлении программ для расчета на ЭВМ.

2.6.3. Проверка результатов расчета.

Для проверки результатов расчета нужно использовать уравнения равновесия, которые включают наибольшее число усилий. Так, например, для проверки усилий , , (рис.3.3) такими уравнениями являются

Навесы на металлическом каркасе облегчают быт. Они защитят автомобиль от непогоды, прикроют летнюю веранду, беседку. Заменят крышу мастерской или козырек над подъездом. Обратившись к профессионалам, вы получите какой угодно навес. Но многие и сами справятся с работой по монтажу. Правда, понадобится точный расчет фермы из профильной трубы. Не обойтись и без соответствующего оборудования, материалов. Конечно, также нужны навыки сварки и резки.

Каркасный материал

Основа навесов – сталь, полимеры, дерево, алюминий, железобетон. Но, чаще каркас составляют металлические фермы из профильной трубы. Этот материал полый, сравнительно легкий, но прочный. В разрезе имеет вид:

  • прямоугольника;
  • квадрата;
  • овала (а также полу- и плоскоовальной фигуры);
  • многогранника.

Сваривая из профильной трубы фермы, чаще выбирают квадратное или прямоугольное сечение. Эти профили легче в обработке.

Разнообразие трубных профилей

Допустимые нагрузки зависят от толщины стенок, марки металла, метода изготовления. Материалом зачастую служат качественные конструкционные стали (1-3пс/сп, 1-2пс(сп)). Для особых нужд используют низколегированные сплавы и оцинковку.

Длина профильных труб обычно составляет от 6 м на малых сечениях до 12 м – на больших. Минимальные параметры от 10×10×1 мм и 15×15×1,5 мм. С увеличением толщины стенок прочность профилей возрастает. Например, на сечениях 50×50×1,5 мм, 100×100×3 мм и свыше. Изделия максимальных размеров (300×300×12 мм и более) применимы скорее для промышленных сооружений.

Что касается параметров элементов каркасов, есть следующие рекомендации:

  • для малогабаритных навесов (до 4,5 м шириной) применяется трубный материал сечением 40×20×2 мм;
  • если ширина до 5,5 м, рекомендованы параметры 40×40×2 мм;
  • для навесов более значительных размеров советуют брать трубы 40×40×3 мм, 60×30×2 мм.

Что такое ферма

Фермой называют стержневую систему, основу строительной конструкции. Состоит она из прямолинейных элементов, соединяемых в узлах. Например, рассматривается конструкция фермы из профильной трубы, в которой отсутствует расцентровка стержней и нет внеузловых нагрузок. Тогда в ее составных частях возникнут лишь усилия растяжения и сжатия. Механика этой системы позволяет ей сохранять геометрическую неизменность при замене жестко крепящихся узлов на шарнирные.

Ферма состоит из следующих элементов:

  • верхний пояс;
  • нижний пояс;
  • стойка, перпендикулярная к оси;
  • подкос (или раскос), наклонный к оси;
  • вспомогательный опорный раскос (шпренгель).

Система решетки быть треугольной, раскосной, полураскосной, крестовой. Для соединения используются косынки, парные материалы, клепки, сварные швы.

Варианты крепления в узлах

Изготовление ферм из профильной трубы подразумевает сборку пояса с определенными очертаниями. По типу они бывают:

  • сегментные;
  • полигональные;
  • двускатные (или трапецеидальные);
  • с параллельными поясами;
  • треугольные (д-и);
  • с поднятым ломаным нижним поясом;
  • односкатные;
  • консоль.

Одни системы проще в монтаже, другие экономичнее по расходу материалов, третьи легче по устройству опорных узлов.

Основы расчета фермы

Влияние угла наклона

Выбор конструкции ферм навесов из профильной трубы связан с уклоном проектируемого сооружения. Есть три возможных варианта:

  • от 6°до 15°;
  • от 15° до 22°;
  • от 22° до 35°.

При минимальном угле (6°-15°) рекомендуются трапециевидные очертания поясов. Для снижения веса допускается высота в 1/7 либо 1/9 общей длины пролета. Проектируя пологий навес сложной геометрической формы, надо приподнять его в средней части над опорами. Воспользуйтесь фермами Полонсо, рекомендуемыми многими специалистами. Они представляют собой систему из двух соединенных затяжкой треугольников. Если нужно высокое сооружение, лучше выбрать многоугольную конструкцию с приподнятым нижним поясом.

Когда угол уклона превышает 20°, высота должна составлять 1/7 часть от общей длины пролета. Последний достигать 20 м. Для повышения конструкции нижний пояс делается ломаным. Тогда увеличение составит до 0,23 длины пролета. Для вычисления нужных параметров пользуются табличными данными.

Таблица определения уклона стропильной системы

При уклоне свыше 22° расчеты ведутся по специальным программам. Навесы такого рода чаще используются для кровли из шифера, металла и подобных материалов. Здесь применяют треугольные фермы из профильной трубы при их высоте в 1/5 от всей длины пролета.

Чем больше угол наклона, тем меньше на навесе будет скапливаться осадков, тяжелого снега. Несущая способность системы возрастает с повышением ее высоты. Для дополнительной прочности предусматривают добавочные ребра жесткости.

Параметры базовых углов

Чтобы понять, как рассчитать ферму из профильной трубы, обязательно выяснить параметры базовых узлов. Например, размеры пролета обычно должны быть указаны в техническом задании. Число панелей, их габариты назначаются предварительно. Вычислим оптимальную высоту (Н) в середине пролета.

  • Если пояса параллельные, полигональные, трапецеидальные, Н=1/8×L, где L – длина фермы. Верхний пояс должен иметь уклон около 1/8×L либо 1/12×L.
  • Для треугольного типа, в среднем, Н=1/4×L или Н=1/5×L.

Раскосы решетки должны иметь наклон примерно 45° (в пределах 35°-50°).

Воспользуйтесь готовым типовым проектом, тогда не придется делать расчет

Чтобы навес был надежным и долго прослужил, его проект требует точных вычислений. Уже после расчета закупаются материалы, в дальнейшем монтируется каркас. Есть более затратный путь – приобрести готовые модули и собрать сооружение на месте. Другой вариант сложнее – заняться подсчетами самостоятельно. Тогда понадобятся данные из спецсправочников по СНиП 2.01.07-85 (воздействия, нагрузки), а также СНиП П-23-81 (данные по стальным конструкциям). Нужно сделать следующее.

  1. Определиться со схемой блоков в соответствии с функциями навеса, углом наклона, материалом стержней.
  2. Выбрать параметры. Учесть зависимость между высотой и минимальным весом кровли, ее материалом и типом, уклоном.
  3. Рассчитать панельные размеры сооружения согласно удаленности отдельных частей, ответственных за передачу нагрузок. Определяется расстояние между соседними узлами, обычно равное ширине панели. Если размер пролета свыше 36 м, вычисляется строительный подъем – обратный погашаемый изгиб, воздействующий из-за нагрузок на конструкцию.

Среди способов расчета статически определимых ферм одним из простейших считается вырезание узлов (участков, где стержни соединены шарнирно). Другие варианты – метод Риттера, метод замены стержней Геннеберга. А также графическое решение путем составления диаграммы Максвелла-Кремоны. В современных компьютерных программах чаще применяется метод вырезания узлов.

Для человека, владеющего знаниями по механике и сопромату высчитать все это не так сложно. Остальным же стоит учесть, что от точности расчетов и величины погрешностей зависит срок службы и безопасность навеса. Возможно, лучше обратиться к специалистам. Или выбрать вариант из готовых проектных решений, куда просто подставить свои значения. Когда понятно, какого вида нужна стропильная ферма из профильной трубы, чертеж для нее наверняка найдется в интернете.

Значимые факторы выбора участка

Если навес относится к дому или другому зданию, на него потребоваться официальное разрешение, о чем тоже придется позаботиться.

Сначала выбирается участок, где будет располагаться сооружение. Что при этом учитывается?

  1. Постоянные нагрузки (фиксированный вес обрешетки, кровли и прочих материалов).
  2. Переменные нагрузки (воздействия климатических факторов: ветер, осадки, в том числе снег).
  3. Особый тип нагрузок (есть ли сейсмическая активность в регионе, штормы, ураганы и подобное).

Также важны характеристики грунта, влияния стоящих рядом зданий. Проектировщик должен учесть все значимые факторы и уточняющие коэффициенты, которые вносятся в алгоритм расчета. Если планируется провести вычисления своими силами, воспользуйтесь программами 3D Max, Аркон, Автокад или подобными. Есть вариант расчета в онлайн-версиях строительных калькуляторов. Обязательно выяснить для намеченного проекта рекомендуемый шаг между несущими опорами, обрешеткой. А также параметры материалов и их количество.

Пример программного расчета для навеса, крытого поликарбонатом

Последовательность работ

Сборку каркаса из металлических профилей должен проводить только специалист по сварочным работам. Это ответственное дело требует знаний и умелого обращения с инструментом. Надо не только понимать, как сварить ферму из профильной трубы. Важно, какие узлы правильнее собрать на земле, и лишь потом поднимать на опоры. Если сооружение тяжелое, для монтажа потребоваться техника.

Обычно процесс монтажа проходит в такой последовательности:

  1. Выполняется разметка участка. Устанавливаются закладные детали, вертикальные опоры. Нередко в ямы сразу помещают металлические трубы, а потом бетонируют. Вертикальность установки проверяется отвесом. Для контроля параллельности натягивается шнур или нить между крайними стойками, остальные выставляются по полученной линии.
  2. Продольные трубы сваркой фиксируют к опорам.
  3. На земле сваривают узлы и элементы ферм. С помощью раскосов и перемычек соединяют пояса конструкции. Потом блоки следует поднять на нужную высоту. Их приваривают к продольным трубам по участкам размещения вертикальных опор. Между фермами по скату вваривают продольные перемычки для дальнейшего крепления кровельного материала. В них проделывают отверстия под крепеж.
  4. Тщательно зачищаются все соединительные участки. Особенно верхние грани каркаса, куда в дальнейшем ляжет кровля. Поверхность профилей очищается, обезжиривается, обрабатывается грунтовкой и окрашивается.

Воспользовавшись готовым проектом, вы быстрее приступите к сборке навеса

Специалисты советуют выполнять столь ответственные работы только при наличии соответствующего опыта. Мало знать в теории, как правильно сварить ферму из профильной трубы. Сделав что-то неправильно, проигнорировав нюансы, домашний мастер рискует. Навес сложится и рухнет. Пострадает все, что под ним будет – авто или люди. Поэтому возьмите знания на вооружение!

Видео: как сварить ферму из профильной трубы

Введите значения размеров в миллиметрах:

X – Длина треугольной стропильной фермы зависит от размера пролета, который необходимо накрыть и способа ее крепления к стенам. Деревянные треугольные фермы применяют для пролетов длиной 6000-12000 мм. При выборе значения X нужно учитывать рекомендации СП 64.13330.2011 «Деревянные конструкции» (актуализированная редакция СНиП II-25-80).

Y – Высота треугольной фермы задается соотношением 1/5-1/6 длины X .

Z – Толщина, W – Ширина бруса для изготовления фермы. Искомое сечение бруса зависит от: нагрузок (постоянные – собственный вес конструкции и кровельного пирога, а также временно действующие – снеговые, ветровые), качества применяемого материала, длины перекрываемого пролета. Подробные рекомендации о выборе сечения бруса для изготовления фермы, наведены в СП 64.13330.2011 «Деревянные конструкции», также следует учитывать СП 20.13330.2011 «Нагрузки и воздействия». Древесина для несущих элементов деревянных конструкций должна удовлетворять требованиям 1, 2 и 3-го сорта по ГОСТ 8486-86 «Пиломатериалы хвойных пород. Технические условия».

S – Количество стоек (внутренних вертикальных балок). Чем больше стоек, тем выше расход материала, вес и несущая способность фермы.

Если необходимы подкосы для фермы (актуально для ферм большой протяженности) и нумерация деталей отметьте соответствующие пункты.

Отметив пункт «Черно-белый чертеж» Вы получите чертеж, приближенный к требованиям ГОСТ и сможете его распечатать, не расходуя зря цветную краску или тонер.

Треугольные деревянные фермы применяют в основном для кровель из материалов требующих значительного уклона. Онлайн калькулятор для расчета деревянной треугольной фермы поможет определить необходимое количество материала, выполнит чертежи фермы с указанием размеров и нумерацией деталей для упрощения процесса сборки. Также с помощью данного калькулятора Вы сможете узнать общую длину и объем пиломатериалов для стропильной фермы.

Навес является простой архитектурной конструкцией, которая применяется в самых различных целях. В большинстве случаев его изготавливают при отсутствии гаража с накрытием на даче или для того, чтобы защитить площадку для отдыха от сильных лучей солнца. Для обеспечения надежности и прочности подобной постройки небольших размеров понадобится произвести расчет навеса. В конечном итоге можно будет получить данные, которые смогут показать, какие фермы будут использоваться и как их нужно будет варить.

Схему закрепления профильных труб можно увидеть на рис. 1.

На рисунке 1 изображена схема закрепления труб

Как рассчитать фермы для навеса своими руками?

Для того чтобы произвести расчет подобной конструкции для навеса, понадобится подготовить:

  • Калькулятор и специальное программное обеспечение;
  • СНиП 2.01.07-85 и СНиП П-23-81.

При проведении расчетов надо будет выполнить следующие действия:

  1. Прежде всего понадобится выбрать схему фермы. Для этого определяются будущие контуры. Очертания нужно выбирать исходя из основных функций навеса, материала и других параметров;
  2. После этого надо будет определить габариты изготавливаемой конструкции. Высота будет зависеть от типа кровли и используемого материала, веса и других параметров;
  3. Если размеры пролета превышают 36 м, понадобится произвести расчет для строительного подъема. В данном случае имеется ввиду обратный погашаемый изгиб от нагрузок на ферму;
  4. Необходимо определить размеры панелей сооружения, которые должны соответствовать расстояниям между отдельными элементами, которые обеспечивают передачу нагрузок;
  5. На следующем этапе определяется расстояние между узлами, которое чаще всего равняется ширине панели.

При произведении расчетов следуйте таким советам:

  1. Понадобится все значения высчитать в точности. Следует знать, что даже малейший недочет приведет к ошибкам в процессе произведения всех работ по изготовлению конструкции. Если нет уверенности в собственных силах, то рекомендуется сразу же обратиться к профессионалам, которые имеют опыт в проведении подобных расчетов;
  2. Для облегчения работы можно использовать готовые проекты, в которые останется лишь подставить имеющиеся значения.

На этом фото изображено металлическое укрытие

В процессе выполнения расчета фермы следует помнить, что в случае ее увеличивающейся высоты будет увеличиваться и несущая способность. В зимнее время года снег на подобном навесе практически не будет накапливаться. Для того чтобы увеличить прочность конструкции, следует установить несколько прочных ребер жесткости.

Для сооружения фермы лучше всего использовать трубу из железа, которая имеет небольшой вес, высокую прочность и жесткость. В процессе определения размеров для подобного элемента понадобится учитывать следующие данные:

  1. Для конструкций небольших размеров, ширина которых составляет до 4,5 м, понадобится использовать трубу из металла 40х20х2 мм;
  2. Для конструкций, ширина которых составляет менее 5,5 м, нужно использовать трубу с размерами 40х40х2 мм;
  3. Если ширина фермы составит более 5,5 м, лучше всего применить трубу 60х30х2 мм или 40х40х3 мм.

В процессе планирования шага ферм следует учитывать, что максимально возможное расстояние между трубами навеса составляет 1,7 м. Только в таком случае можно будет сберечь надежность и прочность конструкции.

Пример расчета ферм для навеса

  1. В качестве примера будет рассмотрен навес шириной 9 м уклоном в 8°. Пролет сооружения составляет 4,7 м. Нагрузки снега для региона находятся на уровне 84 кг/м²;
  2. Вес фермы составляет приблизительно 150 кг (следует взять маленький запас на прочность). Вертикальная нагрузка составляет 1,1 т на стойку с высотой 2,2 м;
  3. Одним концом ферма будет опираться на стенку постройки из кирпича, а вторым - на колонну для опоры навеса с помощью анкерных болтов. Для изготовления фермы используется квадратная труба 45х4 мм. Следует заметить, что с подобным приспособлением достаточно удобно работать;
  4. Лучше всего изготавливать фермы с параллельными поясами. Высота каждого из элементов составляет 40 см. Для раскосов используется труба сечением 25х3 мм. Для нижнего и верхнего пояса применяется труба 35х4 мм. Козырьки и другие элементы нужно будет сварить друг с другом, потому толщина стенки будет 4 мм.

В конечном итоге можно будет получить следующие данные:

  • Расчетное сопротивление для стали: Ry = 2,45 T/см²;
  • Коэффициент надежности - 1;
  • Пролет для фермы - 4,7 м;
  • Высота фермы - 0,4 м;
  • Число панелей для верхнего пояса конструкции - 7;
  • Углы нужно будет варить через один.

Все нужные данные для расчетов можно будет найти в специальных справочниках. Однако профессионалы рекомендуют производить расчеты подобного типа с помощью использования программного обеспечения. Если будет допущена ошибка, то изготавливаемые фермы сложатся под воздействием нагрузок снега и ветра.

Как рассчитать ферму для навеса из поликарбоната?

Навес является сложной конструкцией, поэтому перед приобретением определенного количества материала понадобится смета. Каркас для опоры должен иметь возможность выдерживать любые нагрузки.

Для того чтобы произвести профессиональный расчет конструкции из поликарбоната, рекомендуется обратиться за помощью к инженеру с опытом подобной работы. Если навес являет собой отдельную конструкцию, а не пристройку к частному дому, то расчеты усложнятся.

Уличная кровля состоит из столбиков, лаг, ферм и покрытия. Именно эти элементы и нужно будет рассчитывать.

Если планируется изготовить навес из поликарбоната арочного типа, то не получится обойтись без использования ферм. Фермы являются приспособлениями, которые связывают лаги и опорные столбики. От подобных элементов будут зависеть размеры навеса.

Навесы из поликарбоната, в качестве основы которых применяются металлические фермы, изготавливать достаточно сложно. Правильный каркас сможет распределять нагрузку по опорным столбикам и лагам, при этом конструкция навеса не будет разрушаться.

Для монтажа поликарбоната лучше всего использовать профильные трубы. Основной расчет фермы - учет материала и уклона. К примеру, для односкатной навесной конструкции с маленьким уклоном применяется неправильная форма фермы. Если конструкция имеет маленький угол, то можно использовать металлические фермы в форме трапеции. Чем больше радиус структуры арки, тем меньше существует возможностей задержки снега на кровле. В данном случае несущая способность фермы будет большой (рис. 2).


На рисунке 2 изображен будущий навес покрытый поликарбонатом

Если используется простая ферма домиком размерами 6х8 м, то расчеты будут такими:

  • Шаг между столбиками для опоры - 3 м;
  • Количество металлических столбиков - 8 шт;
  • Высота ферм под стропами - 0,6 м;
  • Для устройства обрешетки крыши понадобится 12 профильных труб с размерами 40х20х0,2 см.

В некоторых случаях можно сэкономить путем уменьшения количества материала. К примеру, вместо 8-ми стоек можно установить 6. Можно также сократить обрешетку каркаса. Однако не рекомендуется допускать потерю жесткости, так как это может привести к разрушению сооружения.

Подробный расчет фермы и дуги для навеса

В данном случае будет производиться расчет навеса, фермы которого устанавливаются с шагом 1 м. Нагрузка на подобные элементы от обрешетки передается исключительно в узлах фермы. В качестве материала для кровли используется профнастил. Высота фермы и дуги может быть любой. Если это навес, который примыкает к основной постройке, то главным ограничителем является форма кровли. В большинстве случаев сделать высоты фермы больше 1 м не получится. С учетом того, что понадобится делать ригеля между колоннами, максимальная высота составит 0,8 м.

Схему навеса по фермам можно увидеть на рис. 3. Голубым цветом обозначаются балки обрешетки, синим цветом - ферма, которую нужно будет рассчитывать. Фиолетовым цветом обозначаются балки или фермы, на которые будут опираться колонны.

В данном случае будет использоваться 6 ферм треугольной формы. На крайние элементы нагрузка будет в несколько раз меньше, чем на остальные. В данном случае металлические фермы будут консольными, то есть их опоры располагаются не на концах ферм, а в узлах, которые изображены на рис. 3. Такая схема позволяет равномерно распределять нагрузки.


На рисунке 3 изображена схема укрытия по фермам

Расчетная нагрузка составляет Q = 190 кг, при этом снеговая нагрузка равна 180 кг/м². Благодаря сечениям возможно произвести расчет усилий во всех стержнях конструкции, при этом нужно учитывать тот факт, что ферма и нагрузка на данный элемент является симметричной. Следовательно, понадобится рассчитывать не все фермы и дуги, а лишь некоторые из них. Для того чтобы свободно ориентироваться в большом количестве стержней в процессе расчета, стержни и узлы промаркированы.

Формулы, которые понадобится использовать при расчете

Понадобится определить усилия в нескольких стержнях фермы. Для этого следует использовать уравнение статического равновесия. В узлах элементов шарниры, потому значение моментов изгиба в узлах фермы равно 0. Сумма всех сил по отношению к оси x и y тоже равна 0.

Понадобится составить уравнение моментов по отношению к точке 3 (д):

М3 = -Ql/2 + N2-a*h = 0, где l - расстояние от точки 3 до точки приложения силы Q/2, которое составляет 1,5 м, а h - плечо действия силы N2-a.

Ферма имеет расчетную высоту 0,8 м и длину 10 м. В таком случае тангенс угла a составит tga = 0,8/5 = 0,16. Значение угла a = arctga = 9,09°. В конечном итоге h = lsina. Из этого следует уравнение:

N2-a = Ql/(2lsina) = 190/(2*0,158) = 601,32 кг.

Таким же образом можно определить значение N1-a. Для этого понадобится составить уравнение моментов по отношению к точке 2:

М2 = -Ql/2 + N1-a*h = 0;

N1-a = Q/(2tga) = 190/(2*0,16) = 593,77 кг.

Проверить правильность вычислений можно путем составления уравнения сил:

EQy = Q/2 - N2-asina = 0; Q/2 = 95 = 601,32 * 0,158 = 95 кг;

EQx = N2-acosa - N1-a = 0; N1-a = 593,77 = 601,32 * 0,987 = 593,77 кг.

Условия статистического равновесия выполнены. Любое из уравнений сил, которые использовались в процессе проверки, можно использовать для того, чтобы определить усилия в стержнях. Дальнейший расчет ферм производится таким же образом, уравнения не изменятся.

Стоит знать, что расчетную схему можно составить, так чтобы все продольные силы направлялись от поперечных сечений. В таком случае знак «-» перед показателем силы, который получен при расчетах, покажет, что подобный стержень будет работать на сжатие.

Для того чтобы определить усилие в стержне з-и, понадобится первым делом определить значение угла у: h = 3siny = 2,544 м.

Ферма для навеса своими руками рассчитывается несложно. Понадобится лишь знать основные формулы и уметь их использовать.