Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Направление магнитной стрелки под проводником с током. Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током, –

Направление магнитной стрелки под проводником с током. Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током, –

Проводникам можно придать такую форму, при которой более отчетливо выяснится характер воздействия магнитного поля на отдельные участки цепи, по которой течет ток. Воспользуемся магнитным полем подковообразного магнита или электромагнита, а цепь с током составим так, чтобы только один прямолинейный участок ее оказался в сильном поле, остальные же участки цепи проходили по тем частям пространства, где напряженность поля чрезвычайно мала и действием поля на эти участки цепи можно вполне пренебречь (рис. 233). Практически лишь прямолинейный участок цепи ab находится под действием значительного поля, так что наблюдаемые силы являются силами, с которыми магнитное поле действует на прямолинейный ток. Изменяя направление тока в проводнике ab (например, с помощью переключателя)

Рис. 233. Действие магнитного поля на прямолинейный проводник с током. Сила F выталкивает проводник с током ab
а изменяя направление магнитного поля (например, поворачивая магнит), можно исследовать направление действующей силы (рис. 234). Эти опыты показывают, что проводник ab отклоняется вправо или влево (рис. 233) или стремится переместиться вверх или вниз (рис. 234, а и б). Наконец, оказывается, что полене действует на проводник, когда ток в нем течет параллельно направлению поля (рис. 234, в). Выполняя разнообразные опыты такого рода, можно сделать следующий общий вывод.

Направление силы F, с которой магнитное поле действует на прямолинейный проводник с током I, всегда перпендикулярно к проводнику и к направлению магнитной индукции В. На проводники, расположенные вдоль направления линий магнитного поля, поле не действует.

При этом ток I, индукция В и сила F направлены так, как показано на рис. 235. Для запоминания этого взаимного расположения удобно пользоваться правилом левой руки (рис. 236). Если расположить левую ладонь так, чтобы вытянутые пальцы указывали направление тока, а линии магнитного поля впивались в ладонь, то отставленный большой палец укажет направление силы, действующей на проводник.

Рис. 234. При перемене направления тока изменяется направление силы F: проводник с током, который выталкивался из магнитного ноля (а), начинает втягиваться в него (б). Если направление тока параллельно линиям магнитного поля, то оно не действует на проводник с током (в)
Если направление магнитной индукции В составляет некоторый угол с направлением тока I, то для определения силы действия поля на ток надо разложить магнитную индукцию В на две составляющие: B║, параллельную току,

Рис. 235. Различные случаи взаимного расположения направлений Магнитной индукции В и тока I: F - сила, действующая на проводник с током
и B^, перпендикулярную к нему (рис. 237). Лишь эта последняя и обусловливает силу действия поля, и по отношению к ней надо применять правило левой руки.

Если выполнять измерение модуля силы F, пользуясь показаниями весов или динамометра (рис. 234, а и б), то можно установить, что эта сила пропорциональна силе тока, магнитной индукции и длине проводника аb. Это соотношение носит название закона Ампера. Конечно, подобными опытами оно может быть проверено лишь очень грубо.

Однако, пользуясь им для расчета сил, действующих на сложные проводники в самых разнообразных случаях, и сравни-

Рис. 236. Правило левой руки

Рис. 237. Разложение магнитной индукции В на две составляющие: B║ , параллельную току, и В^, перпендикулярную к нему
вая результаты расчета с опытом, можно убедиться в справедливости этого закона.

Если магнитная индукция равна В, сила тока равна I, длина прямолинейного проводника с током равна l и угол между вектором В и проводником с током I равен j, то закон Ампера выразится в виде соотношения
(133.1)
Из формулы (133.1) следует, что когда проводник параллелен индукции В (т. е. j=0), то F=0, т. е. на проводники, параллельные направлению поля, поле не действует, как это и вытекает из опытов, описанных в этом параграфе (рис. 234, в).

Мы уже говорили о том, что два параллельных прямолинейных проводника притягиваются друг к друг, если по ним проходят одинаково направленные токи, и отталкиваются, если токи направлены навстречу друг другу (§ 115). Это нетрудно объяснить, если учесть, что каждый проводник находится в магнитном поле, создаваемом током в другом проводнике, и воспользоваться правилами буравчика и левой руки.

Что касается силы притяжения (или отталкивания), то она пропорциональна произведению сил токов I1 и I2 в первом и втором проводниках и длине проводников l и обратно пропорциональна расстоянию между проводниками r:
(133.2)
где m0 - магнитная постоянная (см. формулу (126.2)). Получается это потому, что индукция магнитного поля B1 тока I1 на расстоянии r от первого проводника пропорциональна I1/r, а сила, действующая на второй проводник (длины l), в соответствии с формулой (133.1), пропорциональна B1I2l. Угол j в данном случае прямой, т. е. sinj=1. Легко понять, что такая же по модулю сила действует на первый проводник в магнитном поле тока I2.

Для сравнения сил токов и установления единицы силы тока можно, вообще говоря, воспользоваться любым из различных действий (проявлений) электрического тока - тепловым (§ 57), химическим (§ 65) или магнитным (гл. XII).

В СИ единица силы тока ампер (одна из основных единиц в этой системе) определяется при помощи сил взаимодействия между проводниками, по которым текут токи. Для определения используется именно формула (133.2), выражающая силу взаимодействия двух параллельных токов: один ампер есть сила неизменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии одного метра один от другого в вакууме, вызвал бы между этими проводниками силу, равную 2 10-7 ньютона на каждый метр длины.

Практически трудно с достаточной точностью обеспечить условия применимости формулы (133.2) и измерять в этих условиях силу F. Поэтому на практике для установления эталона ампера и для калибровки других приборов, предназначенных для измерения силы тока, пользуются другим прибором - так называемыми ампер-весами. В них при помощи точных весов измеряется сила взаимодействия двух катушек, по которым проходит один и тот же ток. Для этих условий тоже можно вывести точную формулу, которая, подобно формуле (133.2), связывает силу притяжения катушек с силой тока в них.

133.1. Проводник ab укреплен на острие так, что он может свободно вращаться вокруг оси О (рис. 238). Концы проводника загнуты и погружены в кольцеобразные желобки с ртутью, соединенные с полюсами батареи. Таким образом, через проводник постоянно проходит ток в направлении стрелки I1, В горизонтальной плоскости находится проводник cd, по которому идет ток в направлении стрелки I2. Как установится проводник ab под действием магнитного поля, создаваемого током в проводнике cd?
133.2. Как направлена сила, с которой магнитное поле Земли действует в северном полушарии на горизонтальный проводник с

Рис. 238. К упражнению 133.1
током, если этот проводник: а) расположен в плоскости магнитного меридиана и ток идет с севера на юг; б) если проводник перпендикулярен к плоскости магнитного меридиана и ток идет с запада на восток?

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от . Он равен просто величине , умноженной на длину окружности. Если радиус окружности равен , то

.

Полный ток через петлю есть просто ток в проводе, поэтому

. (13.17)

Напряженность магнитного поля спадает обратно пропорционально , расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что направлено перпендикулярно как , так и , имеем

(13.18)

Фигура 13.7. Магнитное поле вне длинного провода с током .

Фигура 13.8. Магнитное поле длинного соленоида.

Мы выделили множитель , потому что он часто появляется. Стоит запомнить, что он равен в точности (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии ток в создает магнитное поле, равное .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,- они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» на рисунке. Эта кривая проходит расстояние внутри соленоида, где поле, скажем, равно , затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от вдоль этой кривой равен в точности , и это должно равняться , умноженному на полный ток внутри , т.е. на (где - число витков соленоида на длине ). Мы имеем

Или же, вводя - число витков на единицу длины соленоида (так что ), мы получаем

Фигура 13.9. Магнитное поле вне соленоида.

Что происходит с линиями , когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (13.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов, уже учтенных членом .

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились, когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,- у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,- однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.

Вычислим напряженность в точке М, находящейся на расстоянии R от проводника. Направление вектора dН для любого элемента тока будет в т.М одинаковым. Следовательно, геометрическая сумма векторов dН превращается в алгебраическую и ее можно находить с помощью интегрирования.


, для интегрирования переменные r, l и α необходимо выразить через одну из них, например, α.


.

Подставим эти выражения:

. Переменная α изменяется от 0 до π.

. В системе СИ

и

. Размерность [Н] = А/м.

Напряженность магнитного поля, создаваемого бесконечно длинным проводником с током прямо пропорциональна силе тока и обратно пропорциональна расстоянию от проводника. Линии напряженности представляют собой концентрические окружности. Они непрерывны, не имеют ни начала ни конца. Векторные поля, имеющие непрерывные линии вектора, называются вихревыми полями.

Циркуляция вектора напряженности магнитного поля

Циркуляцией вектора А по замкнутому контуру называется интеграл вида

. Направление обхода по контуру должно быть задано.

В электростатическом поле

. В магнитном поле циркуляция вектора Н не равна 0.

Рассмотрим контур l произвольной формы, лежащий в плоскости, перпендикулярной к бесконечному линейному току. Ток направлен от нас. Направление обхода выберем по часовой стрелке.

Рассмотрим отрезок контура dl.

. Проведем два радиус-вектора, соединяющих ток с концами отрезка dl. Угол между ними будет dφ.,


,

. Следовательно


. Полученный результат будет верен и для любого не плоского пространственного контура. Циркуляция вектора напряженности не зависит от формы контура. Направление обхода по контуру и направление тока связаны правилом буравчика (правого винта). При обратном направлении обхода знак циркуляции изменится на противоположный.

Если магнитное поле создано системой токов, то

-циркуляция вектора напряженности магнитного поля по замкнутому контуру равна алгебраической сумме токов, охватываемых этим контуром. Эта теорема о циркуляции называется законом полного тока . Каждый ток считается столько раз, сколько он охватывается этим контуром.

Магнитное поле соленоида

Соленоид представляет собой провод, навитый на цилиндрический каркас (катушка с проводом). По виткам проходит одинаковый ток. Магнитные поля, созданные каждым витком, складываются.

Напряженность поля внутри соленоида велика, а вне его мала и стремится к 0 для бесконечного соленоида. Если длина соленоида много больше диаметра его витков, то его можно считать практически бесконечным.

Возьмем контур 12341 и применим теорему о циркуляции:

N – число витков соленоида.

На участках 12 и 34 контур перпендикулярен к линиям напряженности, следовательно, Н l = 0, на участке 14 Н = 0, значит, вклад в циркуляцию дает только участок 23

,следовательно,

, n – число витков на единицу длины соленоида.

Поле внутри соленоида однородно. При приближении к концам соленоида линии вектора Н начинают расходиться и величина напряженности уменьшается. Такой краевой эффект отсутствует у тороида.

Все магнитное поле сосредоточено внутри тороида и линии вектора Н представляют собой замкнутые концентрические окружности. Напряженность поля рассчитывается по прежней формуле. Длину тороида следует считать по средней линии.

Взаимодействие параллельных токов

Зная магнитное поле, создаваемое проводником с током, можно вычислить силу, действующую на другой проводник с током.

Рассмотрим два параллельных бесконечных проводника с током. Проводник 1 создает в месте нахождения проводника 2 индукцию

. На элемент тока второго проводника будет действовать сила. На единицу длины второго проводника будет действовать сила

.

Точно такая же сила притяжения будет действовать со стороны второго проводника на первый. Если токи в проводниках противоположны, то проводники будут отталкиваться. На основании взаимодействия токов в системе СИ введена четвертая независимая единица – ампер.

Ампер – сила не изменяющегося тока, который, проходя по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого кругового сечения, расположенным на расстоянии 1 м друг от друга в вакууме, вызывал бы между этими проводниками силу 2·10 -7 Н на каждый метр длины.

где r – расстояние от оси проводника до точки.

Согласно предположению Ампера в любом теле существуют микроскопи­ческие токи (микротоки), обусловленные движением электронов в атомах. Они создают свое магнитное поле и ориентируются в магнитных полях макротоков. Макроток - это ток в проводнике под действием ЭДС или разности потенциа­лов. Вектор магнитной индукции характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками. Магнитное поле макротоков описывается также и вектором напряженности. В случае однородной изо­тропной среды вектор магнитной индукции связан с вектором напряженности соотношением


(5)

где μ 0 - магнитная постоянная; μ- магнитная проницаемость среды, показы­вающая, во сколько раз магнитное поле макротоков усиливается или ослабляет­ся за счет микротоков среды. Иначе говоря, μ показывает, во сколько раз век­тор индукции магнитного поля в среде больше или меньше, чем в вакууме.

Единица напряженности магнитного поля - А/м. 1А/м - напряженность такого поля, магнитная индукция которого в вакууме равна

Тл. Земля пред­ставляет собой огромный шарообразный магнит. Действие магнитного поля Земли обнаруживается на ее поверхности и в окружающем пространстве.

Магнитным полюсом Земли называют ту точку на ее поверхности, в кото­рой свободно подвешенная магнитная стрелка располагается вертикально. По­ложения магнитных полюсов подвержены постоянным изменениям, что обусловлено внутренним строением нашей планеты. Поэтому магнитные полюса не совпадают с географическими. Южный полюс магнитного поля Земли рас­положен у северных берегов Америки, а Северный полюс - в Антарктиде. Схе­ма силовых линий магнитного поля Земли показана на рис. 5 (пунктиром обо­значена ось вращения Земли): - горизонтальная составляющая индукции магнитного поля; N r , S r - географические полюсы Земли; N, S - магнитные по­люсы Земли.

Направление силовых линий магнитного поля Земли определяется с по­мощью магнитной стрелки. Если свободно подвесить магнитную стрелку, то она установится по направлению касательной к силовой линии. Так как маг­нитные полюсы находятся внутри Земли,магнитная стрелка устанавливается не горизонтально, а под некоторым углом α к плоскости горизонта. Этот угол α называют магнитным наклонением. С приближением к магнитному полюсу угол α увеличивается. Вертикальная плоскость, в которой расположена стрелка, называется плоскостью магнитного меридиана, а угол между магнитным игеографическим меридианами - магнитным склонением. Силовой характеристикой магнитного поля, как уже отмечалось, является магнитная индукция В. Ее значение невелико и изменяется от 0,42∙10 -4 Тл на экваторе до 0,7∙10 -4 Тл у магнитных полюсов.

Вектор индукции магнитного поля Земли можно разделить на две состав­ляющие: горизонтальную и вертикальную

(рис. 5). Укрепленная навертикальной оси магнитная стрелка устанавливается в направлении горизон­тальной составляющей Земли . Магнитное склонение, наклонение α и горизонтальная составляющая магнитного поля являются основными пара­метрами магнитного поля Земли.

Значение определяют магнитометрическим методом, который основан на взаимодействии магнитного поля катушки с магнитной стрелкой. Прибор, называемый тангенс-буссолью, представляет собой небольшую буссоль (ком­пас с лимбом, разделенным на градусы), укрепленную внутри катушки 1 из не­скольких витков изолированной проволоки.

Катушка расположена в вертикальной плоскости. Она создает добавочное магнитное поле к (диаметр катушки и число витков указываются на приборе).

В центре катушки помещается магнитная стрелка 2. Она должна быть не­большой, чтобы можно было принимать индукцию, действующую на ее полю­сы, равной индукции в центре кругового тока. Плоскость контура катушки ус­танавливается так, чтобы она совпадала с направлением стрелки и была пер­пендикулярна горизонтальной составляющей земного поля r . Под действием r индукции поля Земли и индукции поля катушки стрелка устанавливается по направлению равнодействующей индукции р (рис. 6 а, б).


Из рис. 6 видно, что


(6)

Индукция магнитного поля катушки в центре –


7)

где N - число витков катушки; I - ток, идущий по ней; R - радиус катушки. Из (6) и (7) следует, что



(8)

Важно понять, что формула (8) является приближенной, т.е. она верна только в том случае, когда размер магнитной стрелки намного меньше радиуса контура R. Минимальная ошибка при измерении фиксируется при угле откло­нения стрелки ≈45°. Соответственно этому и подбирается сила тока в катушке тангенс-буссоли.

Порядок выполнения работы

    Установить катушку тангенс-буссоли так, чтобы ее плоскость совпала с на­ правлением магнитной стрелки.

    Собрать цепь по схеме (рис. 7).


3. Включить ток и измерить углы отклонения у концов стрелки

и

. Данные занести в таблицу. Затем с помощью переключателя П изменить направление тока на противоположное, не меняя величины силы тока, и измерить углы отклонения у обоих концов стрелки

и

вновь. Данные занести в таблицу. Таким образом, устраняется ошибка определения угла, связанная с несовпадением плоскости катушки тангенс-буссоли с плоскостью магнитно­го меридиана. Вычислить


Результаты измерений I и занести в таблицу 1.

Таблица 1






    Вычислить В ср. по формуле


где n - число измерений.

    Найти доверительную границу общей погрешности по формуле


,

Где

- коэффициент Стьюдента (при=0,95 иn=5

=2,8).

    Результаты записать в виде выражения


.

Контрольные вопросы

    Что называется индукцией магнитного поля? Какова единица ее измерения? Как определяется направление вектора магнитной индукции?

    Что называется напряженностью магнитного поля? Какова ее связь с магнитной индукцией?

    Сформулировать закон Био-Савара-Лапласа, вычислить на его основе ин­дукцию магнитного поля в центре кругового тока, индукцию поля прямого тока и соленоида.

    Как определяется направление индукции магнитного поля прямого и круго­вого токов?

    В чем заключается принцип суперпозиции магнитных полей?

    Какое поле называют вихревым?

    Сформулируйте закон Ампера.

    Расскажите об основных параметрах магнитного поля Земли.

    Каким образом можно определить направление силовых линий магнитного поля Земли?

    Почему измерение горизонтальной составляющей индукции магнитного по­ ля выгоднее проводить при угле отклонения стрелки в 45°?

ЛАБОРАТОРНАЯ РАБОТА №7