Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Трансформатор тока: принцип работы для измерения параметров электросетей. Принцип работы измерительных трансформаторов тока

Трансформатор тока: принцип работы для измерения параметров электросетей. Принцип работы измерительных трансформаторов тока

а) Устройство и принцип действия

Принципиальным отличием трансформатора тока от трансформатора напряжения является то, что его первичная обмотка включается последовательно в цепь измеряемого тока и, следовательно, через нее проходит весь ток нагрузки или короткого замыкания. Этот ток является для трансформатора тока принужденным и проходит по его первичной обмотке независимо от состояния вторичной обмотки, т. е. от того, замкнута ли она на нагрузку, закорочена или разомкнута [Л. 43, 45, 47, 48, 56, 94].

Устройство и схема включения трансформатора тока показаны на рис. 6-11. Так же как и трансформатор напряжения, трансформатор тока состоит из стального сердечника С и двух обмоток: первичной и вторичной Часто трансформаторы тока изготавливаются с двумя и более сердечниками. В этих конструкциях первичная обмотка является общей для всех сердечников (рис. 6-11, 6). Первичная обмотка, выполняемая толстым проводом, имеет несколько витков и включается последовательно в цепь того элемента, в котором производится измерение тока или осуществляется защита. К вторичной обмотке, имеющей большое число витков, подключаются последовательно соединенные реле и приборы.

Ток, проходящий по первичной обмотке трансформатора тока, называется первичным и обозначается I 1 а ток во вторичной обмотке называется вторичным и обозначается I 2 .

Ток I 1 создает в сердечнике трансформатора тока магнитный поток Ф 1 который, пересекая витки вторичной обмотки, индуктирует в ней вторичный ток I 2 , который также создает в сердечнике магнитный поток Ф 2 но направленный противоположно магнитному потоку Ф 1 . Результирующий магнитный поток в сердечнике равен разности

Величина магнитного потока зависит не только от величины создающего его тока, но и от количества витков обмотки, по которой этот ток проходит. Произведение тока на число витков называется намагничивающей силой и выражается в ампер-витках (Ав). Поэтому выражение (6-3) можно заменить выражением

Отношение витков называется коэффициентом трансформации трансформатора тока.

Поскольку при величинах первичного тока, близких к номинальному значению, ток намагничивания не превышает 0,5-3% номинального тока, то в этих условиях можно с некоторым приближением считать I нам = 0. Тогда из выражения (6-5) следует:

Согласно действующему стандарту [Л. 46] отношение номинального первичного тока к номинальному вторичному току называется номинальным коэффициентом трансформации. Номинальные коэффициенты трансформации указываются на щитках трансформаторов тока, а также на схемах в виде дроби, в числителе которой - номинальный первичный ток, а в знаменателе - номинальный вторичный ток, например: 600/5 или 1 000/1.

Все пересчеты с первичного тока на вторичный и со вторичного на первичный производятся по этим номинальным коэффициентам трансформации по формулам:

Для правильного соединения трансформаторов тока между собой и правильного подключения к ним реле направления мощности, ваттметров и счетчиков выводы обмоток трансформаторов тока обозначаются (маркируются) заводами следующим образом: начало первичной обмотки-Л 1 начало вторичной обмотки - u 1 ; конец первичной обмотки - Л 2 , конец вторичной обмотки - u 2 .

При монтаже трансформаторов тока они обычно располагаются так, чтобы начала первичных обмоток Л 1 были обращены в сторону шин, а концы Л 2 - в сторону защищаемого оборудования.

При маркировке обмоток трансформаторов тока за начало вторичной обмотки н принимается тот ее вывод, из которого ток выходит, если в этот момент в первичной обмотке ток проходит от начала Н к концу К, как показано на рис. 6-12. При маркировке и включении реле по этому правилу ток в реле, как показано на рис. 6-12, при включении его через трансформатор тока сохраняет то же направление, что и при включении непосредственно в первичную цепь.

б) Погрешности трансформаторов тока

Коэффициент трансформации трансформаторов тока так же, как у трансформаторов напряжения, не является строго постоянной величиной и может из-за погрешностей отличаться от номинального значения. Величина погрешностей трансформатора тока зависит главным образом от кратности первичного тока по отношению к номинальному току первичной обмотки и от нагрузки, подключенной к вторичной

Обмотке. Классификация трансформаторов тока по допустимым погрешностям приведена в табл. 6-2.


Допустимые погрешности, приведенные в табл. 6-2, соответствуют нагрузкам вторичной обмотки, не превышающим номинальной, и при вторичном токе, не превышающем 120% номинального. При увеличении нагрузки или тока выше указанных значений погрешность возрастает и трансформатор тока переходит в другой класс точности.

Требования к работе трансформаторов тока, питающих защиту, существенно отличаются от требований к трансформаторам тока, питающим измерительные приборы. Если трансформаторы тока, питающие измерительные приборы, должны работать точно в пределах своего класса при токах нагрузки, близких к их номинальному току, то трансформаторы тока, питающие релейную защиту, должны работать с достаточной точностью при прохождении токов к. з., значительно превышающих номинальный ток трансформаторов тока.

Правила устройств электроустановок [Л. 41] требуют, чтобы трансформаторы тока, предназначенные для питания релейной защиты, имели погрешность, как правило, не более 10%. Большая погрешность допускается в отдельных случаях, когда это не приводит к неправильным действиям релейной защиты.

Погрешности возникают вследствие того, что действительный процесс трансформации в трансформаторе тока происходит с затратой мощности, которая расходуется на создание в сердечнике магнитного потока, перемагничивание стали сердечника (гистерезис), потери от вихревых токов, нагрев обмоток. Указанные потери мощности вносят искажения в полученные выше соотношения между первичным и вторичным токами (6-7).

Процесс трансформации тока из первичной обмотки во вторичную хорошо иллюстрируется так называемой схемой замещения трансформатора тока, приведенной на рис. 6-13. На этой схеме z 1 и z 2 - сопротивления первичной и вторичной обмоток, а z нам. - сопротивление ветви намагничивания, которое характеризует указанные выше потери мощности.

Из схемы замещения видно, что первичный ток I 1 входящий в начало первичной обмотки Н, проходит по ее сопротивлению z 1 и в точке а разветвляется по двум параллельным ветвям.

Основная часть тока, являющаяся вторичным током I 2 , замыкается через сопротивление вторичной обмотки z 2 и сопротивление нагрузки z H , состоящее из сопротивлений реле, приборов и соединительных проводов. Другая часть первичного тока I нам. замыкается через сопротивление ветви намагничивания и, следовательно, в реле, подключенное к вторичной обмотке трансформатора тока, не попадает. Поскольку из всех затрат мощности наибольшая часть приходится на создание магнитного потока в сердечнике, то ветвь между точками а и б схемы замещения трансформатора тока называется ветвью намагничивания и весь ток I нам. , проходящий по этой ветви, - током намагничивания.

Таким образом, схема замещения показывает, что во вторичную обмотку трансформатора тока поступает не весь трансформированный ток, равный I 1 / n T , а его часть и что, следовательно, процесс трансформации происходит c погрешностями.

На рис. 6-14 приведена упрощенная векторная диаграмма трансформатора тока, из которой видно, что вектор вторичного тока I 2 меньше первичного тока, деленного на коэффициент трансформации I 1 / n T , на величину и сдвинут относительно него на угол

(точки над обозначениями токов указывают на то, что вычитание должно производиться век-торно в соответствие с правилами, изложенными в гл. 1).

Различают следующие виды погрешностей трансформаторов тока.

Токовая погрешность, или погрешность в коэффициенте трансформации, определяется как арифметическая разность между первичным током, поделенным на номинальный коэффициент трансформации I 1 /n T и измеренным (действительным) вторичным током I 2 (отрезок на диаграмме рис. 6-14):

Угловая погрешность определяется как угол сдвига вторичного тока I 2 относительно первичного тока I 1 (см. рис. 6-14) и считается положительной, когда I 2 опережает I 1 .

Относительный ток намагничивания определяется как выраженное в процентах отношение численного значения вторичного тока намагничивания I нам к первичному току I 1 /n T:

где есть численное значение вектора

Тока намагничивания (I нам. на векторной диаграмме рис. 6-14). Относительный ток намагничивания характеризует общую погрешность трансформатора тока как по току, так и по углу.

Полная погрешность определяется как выраженное в процентах отношение действующего значения разности между мгновенными значениями первичного и вторичного токов к действующему значению первичного тока:

Из рассмотренного следует, что причиной возникновения погрешностей у трансформаторов тока является прохождение тока намагничивания, т. е. того самого тока, который создает в сердечнике трансформатора тока рабочий магнитный поток, обеспечивающий трансформацию первичного тока во вторичную обмотку. Чем меньше ток намагничивания, тем меньше погрешности трансформатора тока.

Как видно из схемы замещения (рис. 6-13), величина тока намагничивания зависит от э. д. с. Е 2 и сопротивления ветви намагничивания z нам, т. е.

Электродвижущая сила E 2 может быть определена, как падение напряжения от тока I 2 в сопротивлении вторичной обмотки z 2 и сопротивлении нагрузки z H , т. е.

Так как величина вторичного тока I 2 зависит от величины первичного тока I 1 , то Е 2 , а следовательно, и ток намагничивания I нам. возрастают при увеличении тока I 1 или увеличении сопротивления нагрузки z H , подключенной ко вторичной обмотке.

Сопротивление ветви намагничивания z нам зависит от конструкции трансформаторов тока и качества стали, из которой выполнен сердечник. Это сопротивление не является постоянной величиной, а зависит от характеристики намагничивания стали. При насыщении стали сердечника трансформатора тока z нам резко уменьшается, что приводит к возрастанию I нам и как следствие этого к возрастанию погрешностей трансформатора тока.

Таким образом, условиями, определяющими величины погрешностей трансформаторов тока, являются: отношение, т. е. кратность, первичного тока, проходящего через трансформатор тока, к его номинальному току и величина нагрузки, подключенной к его вторичной обмотке. Выбор трансформаторов тока по этим условиям рассмотрен в § 6-5.

в) Схемы соединения трансформаторов тока

Для подключения реле и измерительных приборов вторичные обмотки трансформаторов тока соединяются в различные схемы. Наиболее распространенные схемы приведены на рис. 6-15.

На рис. 6-15, а дана основная схема соединения в звезду, которая применяется для включения защиты от всех видов однофазных и междуфазных к. з.

На рис. 6-15, б дана схема соединения в неполную звезду, используемая главным образом для включения защиты от междуфазных к. з. в сетях с изолированными нулевыми точками.

На рис. 6-15,в дана схема соединения в треугольник, используемая для получения разности фазных токов (например, для включения дифференциальной защиты трансформаторов).

На рис. 6-15, г дана схема соединения на разность токов двух фаз. Эта схема используется для включения защиты от междуфазных к. з., так же как схема на рис. 6-15, б.

На рис. 6-15, д дана схема соединения на сумму токов всех трех фаз, используемая для включения защиты от однофазных к. з. и замыканий на землю. Как известно, сумма токов симметричной трехфазной нагрузки, а также токов симметричного трехфазного и двухфазного к. з. равна нулю. Поэтому в указанных случаях ток в реле, подключенном к этой схеме, также равен нулю. При однофазных к. з. и замыканиях на землю ток проходит только по одной поврежденной фазе, поэтому сумма фазных токов не будет равна нулю и в реле будет проходить ток повреждения.

Практически из-за того, что трансформаторы тока имеют неодинаковые погрешности, в реле и при симметричных токах в фазах проходит небольшой ток, называемый током небаланса. Рассмотренная схема называется также схемой фильтра нулевой последовательности.

На рис. 6-15, e дана схема последовательного соединения двух трансформаторов тока, установленных на одной фазе.

При таком соединении нагрузка, подключенная к ним, распределяется поровну, т. е. на каждый уменьшается в 2 раза. Происходит это потому, что ток в цепи, равный I 2 = I 1 /n T , остается неизменным, а напряжение, приходящееся па каждый трансформатор тока, составляет I 2 z H / 2. Рассмотренная схема применяется при использовании маломощных трансформаторов тока, например, встроенных в вводы выключателей.

На рис. 6-15, ж дана схема параллельного соединения двух трансформаторов тока, установленных на одной фазе. Схема имеет особенность, которая состоит в том, что ее коэффициент трансформации в 2 раза меньше коэффициента трансформации одного трансформатора тока. Происходит это от того, что ток в реле равен сумме вторичных токов трансформаторов тока, т. е. в 2 раза больше каждого. Поэтому если коэффициент трансформации каждого трансформатора тока равен n T =I 1 / I 2 , то коэффициент трансформации схемы равен n CX =I 1 / 2 I 2 , т. е. в 2 раза меньше.

Это свойство используется для повышения мощности встроенных трансформаторов тока тина ТВ-35 с малыми коэффициентами трансформации: 50/5, 75/5. Дело в том, что вторичная обмотка трансформатора тока ТВ-35 с коэффициентом трансформации, например, 50/5 = 10 должна иметь всего 10 витков, так как токоведущий стержень ввода представляет собой одновитковую первичную обмотку. При таком малом числе витков трансформатор тока имел бы весьма малую мощность. Для повышения мощности эти трансформаторы тока выполняются с коэффициентом трансформации не 50/5, а 50/2,5 - 20 и имеют поэтому 20 витков вторичной обмотки. Благодаря удвоенному количеству витков мощность трансформатора тока возрастает, но для получения стандартного коэффициента трансформации 50/5 вторичные обмотки двух трансформаторов тока одной фазы 50/2,5 соединяются параллельно.

Кроме того, схема параллельного соединения используется для получения нестандартных коэффициентов трансформации. Например, для получения коэффициента трансформации 37,5/5 соединяют параллельно два стандартных трансформатора тока с коэффициентом трансформации 75/5.

При использовании различных энергетических систем возникает необходимость в преобразовании определенных величин в аналоги с пропорционально измененными значениями.

Такая операция позволяет воссоздавать процессы в электронных устройствах, гарантируя безопасные учет их потребления. Для этого используется специальное оборудование — трансформатор тока наружной установки.

Когда нужны трансформаторы тока?

Измерительные трансформаторы тока предназначены для замера характеристик, ограниченных номинальным напряжением. Последняя величина варьируется от 0.66 до 750 кВ. ТТ широко используются для различных целей:

  1. При отделении низковольтных учетных приборов и реле от первичного напряжения в сети, что обеспечивает безопасность электрослужбам во время ремонта и диагностики.
  2. Силами трансформаторов тока релейные защитные цепи получают питание. В случае короткого замыкания или проблем с режимами работы электроприборов ТТ обеспечивает корректную и оперативную активацию релейной защиты.
  3. Используются для учета электроэнергии с помощью счетчика.

На практике встречаются различные модели измерительных трансформаторов и в компактных электроприборах с малым корпусом, и в полноценных энергетических установках с огромными габаритами.

Классификация и расчет

Расчет и выбор трансформаторов тока следует начинать с изучения классификации представленных на рынке устройств. Все ТТ в первую очередь подразделяются на две категории в зависимости от целевого назначения:

  1. Для измерения показателя счетчика.
  2. Для защиты электрооборудования.
  • предназначенные для работы на открытом воздухе;
  • функционирующие в закрытом помещении;
  • используемые в качестве встроенных элементов электрооборудования;
  • накладные, предназначенные для для проходного изолятора;
  • переносные, дают возможность осуществлять расчет в любом месте;

Все трансформаторы тока могут иметь различный коэффициент трансформации, который получают при изменений количества витков первичной или вторичной обмотки. Также эти устройства различаются по количеству ступеней работы на одноступенчатые и каскадные.

Если рассматривать конструктивные особенности, то ТТ могут иметь различную по типу изоляцию:

  • сухую, изготовленную из фарфора, бакелита или литой эпоксидной изоляции;
  • бумажно-масляную;
  • газонаполненную;
  • залитую компаундом;

Также исходя из характеристик конструкции, выделяют катушечные, одновитковые и многовитковые ТТ с литой изоляцией.

Как выбрать трансформатор тока наружной установки для счетчика электроэнергии?

Расчет и выбор трансформаторов тока для счетчика следует начинать с анализа базовых параметров номинального тока:

  • номинальное напряжение сети;
  • параметр номинального тока первичной и вторичной обмотки;
  • коэффициент трансформации;
  • класс точности;
  • особенности конструкции;

При выборе номинального напряжения устройства необходимо подбирать значение превышающие или идентичное максимальному рабочему напряжению. Если рассматривать вариант счетчика 0.4 кВ, то здесь потребуется измерительный трансформатор на 0.66 кВ.


Представлено на это фото

Значение номинального тока вторичной обмотки для того же счетчика, как правило, составляет 5 А. А вот с параметром для первичной обмотки нужно быть осторожнее. От этого значения зависит практически все подключение. Номинальный ток первичной обмотки формуется относительно коэффициента трансформации.

Последний следует выбирать по нагрузке с учетом работы в аварийных ситуациях. Согласно официальным правилам устройства электроустановок, допустимо подключение и использование трансформаторных устройств с завышенным коэффициентом трансформации.

Класс точности следует выбирать в зависимости от целевого назначения счетчика электричества. Коммерческий учет требует высокий класса точности — 0.5S, а технический учет потребления допускает параметр точности в 1S.

Говоря о конструкции ТТ, нужно учесть, что для счетчика с напряжением до 18 кВ используются однофазные или трехфазные ТТ. Для более высоких значений подойдут только однофазные конфигурации.

Как осуществляется подключение измерительного ТТ тока для счетчика?

Обозначение на схеме

Специалисты не рекомендуют осуществлять подключение счетчика с помощью трехфазного ТТ. Это обусловлено его несимметричной магнитной системой и увеличенной погрешностью. В этом случае оптимальным вариантом будет группа из 2 однофазных приборов, соединенных в неполный треугольник.

Подробнее изучить классификацию, базовые параметры и технические требования на подключение и расчет ТТ для счетчика электроэнергии можно в ГОСТ 7746-2001.

Перед тем, как рассказать об измерительных трансформаторах – немного теории. Трансформатор – элемент электрической цепи, преобразующий величину переменного напряжения. Трансформаторы могут быть:

  • понижающими , выдающие на выходе меньшее напряжение, чем на входе;
  • повышающими , выполняющие противоположное преобразование;
  • разделительные , не изменяющие величину напряжения, применяющиеся для гальванической развязки между участками электрической сети.

Повышающие и понижающие трансформаторы обратимы: если подать номинальное выходное напряжение трансформатора на его вторичную обмотку, на первичной мы получим номинальное входное напряжение.

С токами в обмотках происходит обратная картина. Первичная обмотка рассчитывается на ток, соответствующий номинальной мощности трансформатора. Под мощность выбирается и сечение магнитопровода, и диаметр обмоточного провода первичной обмотки.

Ток вторичной обмотки понижающего трансформатора может быть больше тока в первичной во столько раз, во сколько меньше ее напряжение. Это отношение называется коэффициентом трансформации. Поэтому сечение обмоточного провода вторичной обмотки у понижающего трансформатора больше. У понижающего – все наоборот. У разделительного – все одинаково.

Зачем нужны измерительные трансформаторы напряжения

В электроустановках до 1000 В измерение напряжения производят, подключая вольтметры непосредственно к шинам или другим контролируемым участкам сети. Но в сетях 6 кВ и выше это невозможно, потому что:

  • при измерении высокого напряжения требуется понизить его величину до размера, воспринимаемого рамкой стрелочного прибора или электронным преобразователем цифрового. Резистивные делители не выполнят задачу с требуемой точностью, а применение понижающего трансформатора сделает прибор громоздким;
  • изоляция проводников для подключения прибора должна выдерживать номинальное напряжение электроустановки . Кроме того, должны соблюдаться междуфазные расстояния , требуемые ПУЭ. Выполнить это невозможно.

Поэтому для измерений величину напряжения понижают, и для этого нужен трансформатор напряжения

Трансформаторы напряжения и их конструкция

На какое бы напряжение не была рассчитана первичная обмотка трансформатора напряжения, напряжение на вторичной его обмотке стандартно – 100 В . Это сделано для унификации: счетчику электроэнергии без разницы, в какой электроустановке работать – 6 кВ, 10 кВ или более. Если он предназначен для эксплуатации с трансформаторами напряжения, в его технических характеристиках в графе «номинальное напряжение» указано: «3х100 В». Цифра «3» означает, что для измерений к нему подключаются три фазы.

Конструктивно трансформаторы напряжения выполняются:

  • элемент преобразования одной фазы напряжения в своем корпусе, при трехфазном напряжении устанавливаются три таких трансформатора;
  • один корпус содержит трансформатор для преобразования всех трех фаз .

Первичные обмотки трехфазных трансформаторов соединяются в звезду.

Вторичных обмоток у трансформаторов напряжения несколько:

  • обмотка для приборов учета , имеющая класс точности 0,5s;
  • обмотка для измерительных приборов – класс точности 0,5;
  • обмотка для устройств релейной защиты – класс 10Р;
  • обмотка для разомкнутого треугольника – класс 10Р.

Класс точности имеет значение при учете и измерениях. Но есть еще один нюанс: измерительная обмотка трансформатора работает в заявленном классе точности, если не превышена допустимая нагрузка на нее. Поэтому, вместе с классом, на бирке трансформатора указывается допустимая мощность , превышать которую нельзя.


Еще один фактор, изменяющий класс точности – сопротивление соединительных проводников . Если прибор учета или амперметр находится вдали от трансформатора напряжения и подключен контрольным кабелем с жилами недостаточного сечения, то значение напряжения на нем будет меньше, чем на трансформаторе.

Выводы вторичной обмотки трансформатора напряжения, используемого для коммерческого учета, закрывают крышкой и пломбируют.

Первичные обмотки трансформаторов напряжения защищают предохранителями. Для защиты вторичных обмоток раньше тоже применяли предохранители, но теперь их заменили автоматические выключатели.


А теперь – вспомним теорию в начале статьи. Основная опасность при работе на трансформаторах напряжения состоит в явлении обратной трансформации . Если по каким-то причинам на вторичную обмотку попадет напряжение 100 В, то первичная окажется под номинальным напряжением электроустановки. Работающие в ячейке люди окажутся под напряжением . Поэтому при выводе в ремонт трансформатора напряжения принимают меры. Исключающие обратную трансформацию.

Зачем нужны трансформаторы тока

Одна из причин, из-за которых в электроустановках выше 1000 В устанавливают трансформаторы тока – та же, что и для трансформаторов напряжения. Невозможно обеспечить изоляцию цепей для подключения приборов .

Но есть дополнительные факторы, вынуждающие использовать их и в электроустановках выше 1000 В:

  • максимальный ток, на который рассчитаны электросчетчики прямого включения – 100 А. Токи выше 100 А требуется понизить .
  • включение амперметров последовательно с нагрузкой снижает надежность электроснабжения ;
  • вольтметр подключается к шинам через предохранители или автоматический выключатель, выводы амперметра защитить невозможно . Ток короткого замыкания в амперметре равен току КЗ на шинах. Ошибки в эксплуатации приводят к тяжелым последствиям , а неисправности прибора выводят его из строя навсегда. Поэтому и требуется выполнить гальваническую развязку амперметра с сетью.
  • Заменить амперметр прямого подключения можно, только отключив нагрузку .

Принцип действия и конструкция трансформаторов тока

Трансформатор тока тоже имеет первичную и вторичную обмотку. Но особенность его в том, что первичная обмотка имеет один или несколько витков, а в большинстве изделий представляет собой шину, проходящую через корпус трансформатора. Вариант – трансформаторы, не имеющие собственной первичной обмотки. Они надеваются на шину с измеряемым током или через них пропускается провод, жила кабеля.


Вторичная обмотка у трансформатора тока на напряжение до 1000 В одна, но у высоковольтных их – минимум две, но бывает и больше. Работает он аналогично повышающему трансформатору, поэтому – все, что сказано в начале статьи о соотношении токов в них для него справедливо.

Номинальный ток вторичной обмотки трансформатора тока всегда равен 5 А , на какой бы ток не была рассчитана первичная. Классы точности обмоток для подключения аппаратуры различаются так же, как и у трансформаторов напряжения.

Но вот подключить к трансформатору тока, используемому для учета электроэнергии, ничего больше не получится. По правилам, кроме счетчика, там не должно быть ничего. И если для аппаратов выше 1000 В это требование легко выполнить (один трансформатор имеет несколько обмоток), то для электроустановок до 1000 В при необходимости устанавливают по два трансформатора на одну фазу: один – для учета, другой – для всего остального (амперметры, ваттметры, устройства защиты, компенсация реактивной мощности). Выводы вторичной обмотки для коммерческого учета у всех трансформаторов закрываются крышкой и пломбируются.


Трансформатор тока должен работать в замкнутой на нагрузку или накоротко вторичной обмоткой . Иначе на ней наводится ЭДС далеко не безопасной величины как для людей, так и для электрооборудования. При обрыве во вторичных цепях можно получить смертельный удар током , даже проведя рукой рядом с клеммами амперметра или счетчика. А электронные схемы на входе приборов выйдут из строя под действием высокого напряжения .

Поэтому для замены амперметров и электросчетчиков в токовых цепях устанавливают специальные клеммы , на которых перед демонтажем прибора обмотку трансформатора закорачивают . Для приборов учета рядом устанавливают клеммы для отключения цепей напряжения. Это функции совмещены в специальном устройстве, называющимся «колодка клеммная измерительная ». Для коммерческих цепей учета эти коробки пломбируются, для чего винт, крепящий ее крышку, имеет прорезь в головке (как у винтов крепления крышки корпуса электросчетчика).

Видео про трансформаторы тока

Почему нельзя размыкать вторичную обмотку трансформатора тока и зачем ее обязательно заземлять? Попутно вы узнаете о технических характеристиках и конструкции трансформаторов тока, особенностях их применения.

Содержание:

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Такая возможность позволяет выполнять безопасные измерения, производить моделирование определенных процессов в электроустановках. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на , применяемого для электрических и магнитных полей.

В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.

В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.


В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и , при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.


С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к . Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.

Трансформаторы тока (далее по тексту – ТТ) относятся к категории устройств, преобразующих параметры электромагнитных систем при помощи индуктивно связанных обмоток магнитопроводов. Принцип действия трансформатора тока, основанный на законе электромагнитной индукции, используется в ТТ при передаче и распределении электрической энергии, в развязках электрических цепей, при измерении параметров высоковольтных сетей и токов большой мощности. На рис. ниже показан трансформатор тока модели ТЛМ-10, используемый в системах управления и измерений электрических цепей с номинальным напряжением 10 кВ.

Индуктивные связи в ТТ

Принцип работы трансформатора тока представляет собой техническую реализацию закона электромагнитной индукции Фарадея, согласно которому в замкнутом токопроводящем контуре при изменении магнитного потока возникает электродвижущая сила, называемая в современной электродинамике индуцированной ЭДС. Простейшим объяснением для «чайников», слабо представляющих, из чего состоит трансформатор, не знающих его устройство или что такое индуцированная ЭДС, и как она может влиять на работу сложнейших трансформаторных систем, послужит схема индуктивных связей трансформатора, приведенная ниже.

Дополнительная информация. Индуктивными связями называют связи между электрическими цепями посредством магнитных полей.


На схеме показаны три основных элемента трансформатора:

  • поз. 1 – магнитопровод, служащий для размещения токопроводящих контуров-обмоток;
  • поз. 2 – первичный контур, называемый первичной обмоткой, к которому подводят электроэнергию переменного тока;
  • поз. 3 – вторичный контур, называемый вторичной обмоткой. К нему подключается приемник электроэнергии.

При подаче на первичный контур переменного тока напряжением u1 через первичную обмотку начинает проходить переменный ток I1 , создающий магнитный поток Ф, изменяющийся по такой же синусоидальной гармонике. При этом в обмотке первичного контура индуцируется переменная ЭДС (электродвижущая сила) e1 . Контуры трансформатора находятся в индуктивной связи, поскольку через их обмотки проходит единый поток Ф. Соответственно, изменения магнитного поля в первичном контуре будут изменять магнитный поток, а он, в свою очередь, будет индуцировать во вторичном контуре электродвижущую силу e2 , изменяющуюся в той же гармонике. Под воздействием e2 во вторичном контуре возникает переменный ток I2. При замыкании вторичной обмотки на нагрузку ZН создается вторичная цепь, которая может служить для применения в приемниках энергии, в выпрямителях, усилителях и других приборах с развязанными электрическими цепями.

По своей сути трансформатор является передатчиком энергии между проводящими контурами, преобразуя их электромагнитные характеристики (лат. transformare означает преобразовывать) в силу тока I , сопротивление R и напряжение U. В соответствии со сложившейся терминологией проволочные или ленточные изолированные проводящие обмотки, намотанные на магнитопровод из ферромагнитных сталей, называют катушками, а сам магнитопровод – сердечником катушки.

Это важно! Передачу энергии путем создания ЭДС в контурах и трансформацию ее характеристик возможно осуществлять лишь для переменного тока. Постоянный ток также формирует магнитное поле, однако оно является постоянным и неизменяемым, тогда как ЭДС в обмотках катушек трансформатора образуется только при изменении окружающего магнитного поля.

На рис. ниже показана конструкция традиционного трансформатора, состоящего из двух катушек и сердечника, собранного из стальных пластин.


Особенности трансформации энергии для ТТ

Для чего нужен трансформатор, в чем состоит его практическое предназначение? Зачем трансформаторные приборы присутствуют во всех электрических системах? На все вопросы ответ один – в практике эксплуатации электрических сетей трансформаторы выполняют важнейшую функцию изменения величины тока или напряжения, поданного от генератора переменного тока, для дальнейшего использования в промышленном электрооборудовании и бытовой технике. Данное преобразование называют масштабированием, поскольку сами трансформаторные приборы энергию не создают и не преобразовывают, а всего лишь увеличивают или уменьшают показатели системы переменного тока. Для количественной оценки изменения преобразованного параметра сети – тока или напряжения, введено понятие коэффициента трансформации K, показывающего, во сколько раз отличаются значения этого параметра на входе и выходе. Для напряжения коэффициент трансформации определяется по соотношению KU = U2 /U1, для тока – по формуле:

Если величины напряжения или тока на выходе превышают единицу (K>1), трансформатор называется повышающим. При К<1 трансформатор – понижающего типа. Для идеального трансформатора напряжения с неизменяющейся индуктивной связью между первичным и вторичным контурами коэффициент трансформации согласуется с количеством витков W обмоточного провода на катушках по прямой пропорциональной зависимости:

KU = W2 / W1 = U2 /U1

В этой формуле W2 и W1 указывают количество витков на катушках.

Если рассматривать трансформаторы тока, назначение и принцип действия этих приборов, то для них соблюдается пропорциональность первичного и вторичного тока:

I1 =I2 / KI или I2 = I1 * KI.

Функциональное назначение трансформаторов тока заключается в снижении вторичного тока до величины, гарантирующей безаварийную эксплуатацию электрооборудования и безопасность персонала, то есть канонический коэффициент трансформации по току всегда меньше единицы. Для расчета ТТ удобнее пользоваться номинальным коэффициентом трансформации, определяемым как отношение значения номинального I1 к номинальному I2 . В этом случае К больше единицы.

Величину номинального вторичного тока I2н указывают в паспорте каждого конкретного ТТ в качестве одного из параметров изделия. Значение I2н составляет 1А или 5А. Для номинального первичного тока I1н установлен стандартный числовой ряд значений от 1А до 40 000А.

Номинальный коэффициент трансформации ТТ определяют как отношение I1н к I2н и обозначают путем указания обоих параметров, например:

  • 150/5;
  • 1000/5 или
  • 600/1.

На рис. ниже показан ТТ типа Т-0,66 с коэффициентом трансформации 75/5 А.


Особенности конструкции ТТ

Трансформаторы напряжения, по аналогии с ТТ, выполняют функцию изменения другого параметра электрической сети – напряжения. Однако, при сопоставлении, чем отличается трансформатор тока от трансформатора напряжения (далее – ТН), становится очевидным различное предназначение трансформаторов тока и напряжения:

  1. ТТ уменьшают величину тока до показателей, допускающих безопасное подключение измерительной аппаратуры или систем релейной защиты;
  2. Трансформаторы напряжения изменяют напряжение с целью подгонки определенной электрической системы под нужные стандарты. Изменяя параметры напряжения, установленные для универсальной электрической сети (например, трехфазные 220 и 380 В), с помощью ТН можно подключать любое промышленной оборудование и бытовую технику.

ТТ имеет существенное отличие от устройства ТН, поскольку заложенный в трансформатор тока принцип работы вносит свои особенности в конструкцию основных элементов ТТ и прибора в целом. К числу основных особенностей ТТ относят:

  • выполнение первичной обмотки просто в виде одиночной толстой шины с целью минимизации количества витков;
  • намотка провода вторичной обмотки на сердечник большой площади сечения;
  • ток во вторичном контуре ТТ равен 5А и реже 1А.

Измерительные ТТ и ТН

Трансформаторные устройства, регулируя величины напряжения и тока, обеспечивают стабильность энергетической системы. Кроме подачи электропитания требуемых параметров на приборы и оборудование, трансформаторы «помогают» проводить измерения параметров сети с большими значениями напряжения и тока для определения с высокой точностью их номинальных показателей. Назначение измерительных трансформаторов состоит в следующем:

  • отделение цепи измерительных устройств (амперметров, вольтметров, электросчетчиков и других приборов) или систем релейной защиты от сети с высоким напряжением или током;
  • преобразование высоковольтного напряжения или мощного тока до величин, удобных для измерений стандартными приборами;
  • получение максимально точного правильного результата измерений.

Измерительные трансформаторы тока и напряжения считаются вспомогательными приборами и используются совместно со средствами измерения и реле в сетях переменного тока. Если невозможно напрямую подключиться измерительными приборами в высоковольтную сеть, то здесь будет нужен трансформатор тока. Средства измерения подключаются к его вторичной обмотке и получают все необходимые данные по замеряемому параметру.

На рис. ниже показан измерительный трансформатор тока модели ТПЛ-СЭЩ 10 кВ номинальным напряжением 10 кВ, который предназначен для работы с номинальным первичным током в диапазоне от 10 до 2000 А при номинальном вторичном токе в 5 А.


Область применения ТТ

Весь перечень прикладных задач, указывающий, для чего нужны трансформаторы тока, можно свести к двум основным направлениям:

  1. Измерение параметров сети с помощью доступных дешевых измерительных приборов, рассчитанных на малый ток (до 5 А) и низковольтное напряжение. Тем самым обеспечивается безопасное обслуживание измерительной аппаратуры;
  2. Контроль параметров электротока по всей цепи, в которой установлены ТТ. При достижении током предельного (аварийного) значения срабатывает аппаратура защиты, отключающая эксплуатируемое оборудование.

Это важно! Установка трансформаторов тока в контролируемых цепях позволяет концентрировать измерительную аппаратуру на специальных щитах или в составе пультов управления. Правильно выполненный монтаж трансформаторов тока дает возможность размещения измерительных приборов на безопасном удалении от коммутаций цепи и дистанционно управлять работой электрооборудования в автоматическом режиме.

Классы точности ТТ

Для ТТ определены пять классов точности, характеризующих в процентах допустимую погрешность по току при его номинальных значениях:

  • класс точности 0,2 ограничивает погрешность ТТ в пределах 0,2% и применим для трансформаторных устройств, используемых в лабораторных измерениях;
  • класс точности 0,5 допустим для ТТ, обслуживающих аппаратуру точной защиты и оборудование высокоточной наладки;
  • класс 1 – для цепей промышленного оборудования с подключением вольтметров, амперметров и устройств релейной защиты;
  • классы 3 и 10 – промышленные установки, релейные защиты.

Использование ТТ для локальных измерений в энергетических системах и в комплексе с современными системами измерений и контроля позволяет значительно повышать ресурс безаварийной эксплуатации промышленного электрооборудования и сложнейшей бытовой техники. Внедрение ТТ в автоматизированные системы управления электросетями позитивно влияет на снижение потерь электроэнергии в периоды ежедневных пиковых нагрузок и ставит барьеры для прямых хищений электрической энергии.

На рис. ниже показано подключение счетчика электроэнергии через трансформатор тока.


Видео