Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Системы мониторинга трансформаторов. Хроматографический анализ растворенных в масле газов - контроль за состоянием трансформаторов Кто выполняет работу

Системы мониторинга трансформаторов. Хроматографический анализ растворенных в масле газов - контроль за состоянием трансформаторов Кто выполняет работу


Данное исследование необходимо для осуществления контроля над изменениями в составе масла в ходе эксплуатации трансформаторов. Во время использования трансформаторов используемое масло требует постоянного аналитического контроля за качественными и количественными показателями соединительных единиц в нем.

Самым оптимальным способом контроля за состоянием масла является хроматографический анализ трансформаторного масла в лабораторных условиях. Хроматографический анализ проводится на базе лаборатории АНО «Центра химических экспертиз». Сегодня эксперты обеспечены современным оборудованием и материалами для исследований, представляющих комплексный метод. Комплексность задачи заключается в отождествлении частиц и разделения сложных смесей на отдельные составляющие и вещества, оценке их качественного и количественного показателя.

Исходя из полученных химических исследований, эксперты подводят итоги и подготавливают независимое заключение о состоянии трансформаторного масла.

Что определяет хроматографический анализ

Хроматографический анализ трансформаторного масла позволяет определить наличие и виды сложных газов, растворенные в маслах, эти сведении помогут выявить дефекты в работе трансформатора в определенных его узлах, также установить характер и степень износа, нарушений работы.

Хроматографический анализ трансформаторного масла проводится на предоставленных образцах, отобранных пробах масла и доставленных в лабораторию. Полученные результаты помогут принять решение о дальнейшей эксплуатации трансформатора. Анализ выполняется на хронографе, аттестованными экспертами химической лаборатории.

За качественной оценкой на хроматографе трансформаторного масла, необходимо обращаться в АНО «Центр химических экспертиз».

Страница 5 из 13

5. ХРОМАТОГРАФИЧЕСКИЙ АНАЛИЗ РАСТВОРЕННЫХ В МАСЛЕ ГАЗОВ

В последнее десятилетие для диагностики состояния трансформатора получил широкое распространение и показал удовлетворительные результаты хроматографический анализ растворенных в масле газов. От электротехнического персонала и электромонтеров требуется правильно отобрать пробу масла и доставить ее в лабораторию, а после выполнения анализа правильно истолковать его результаты и принять решение о дальнейшей эксплуатации трансформатора.

Рисунок 7. Отбор пробы масла в шприц

Анализ выполняется на хроматографе, как правило, специально подготовленными работниками химической службы.
Существует несколько способов выделения газов из масла, каждому из которых соответствуют свои способы отбора пробы масла. Рассмотрим два наиболее распространенных способа.
Отбор пробы масла в стеклянные шприцы применяется в случае выделения растворенных в масле газов с помощью вакуума. Отбор проб производится в медицинские шприцы объемом 5 или 10 мл. Предварительно шприц проверяют на герметичность. Для этого оттягивают поршень до предела и затем конец иглы шприца вводят в резиновую пробку, не протыкая ее насквозь. Надавливают на шток, перемещая поршень примерно на половину его входа. В таком состоянии шприц вместе с пробкой опускают в воду. Отсутствие пузырьков выделяемого воздуха свидетельствует о достаточной герметичности.
Для отбора пробы масла на трансформаторе имеется специальный патрубок. Перед отбором патрубок должен быть очищен от загрязнений. При отборе нужно слить некоторое количество масла, застоявшегося в патрубке, промыть маслом шприц и маслоотборное приспособление. Лучше всего пользоваться схемой, рекомендованной методическими указаниями . Тройник 5 (рис. 7) с резиновой пробкой 7 с помощью резиновой трубки 2 и переходника соединяют с патрубком 1 трансформатора, а трубкой 3 - с трехходовым или иным краном 4. Вся система должна быть герметичной. Длина трубки 2 выбирается такой, чтобы было удобно оперировать с тройником 5 и шприцем 6. Открывают вентиль на трансформаторе. Открывают кран 4 и сливают 1-2 л масла. Закрывают кран 4, вводят иглу шприца в тройник 5, протыкая насквозь пробку 7. Заполняют шприц маслом. Под избыточным давлением масла поршень шприца должен перемещаться свободно. Открывают (не полностью) кран 4. Для промывки шприца нажимают на его поршень и выдавливают из него масло. Операцию повторяют 2 раза. Затем, набрав масло в шприц, вынимают его из тройника и вводят конец иглы в заранее подготовленную резиновую пробку (как при проверке герметичности шприца). Закрывают вентиль на трансформаторе и отсоединяют систему отбора. Заполненный маслом шприц с пробкой помещают в специальную (лучше деревянную) тару с гнездами для шприцев, маркируют пробу и отправляют в лабораторию.

Рисунок 8. Схема маслоотборного устройства

При маркировке пробы следует фиксировать объект (электростанция или подстанция), местную маркировку трансформатора, место отбора пробы (бак, устройство РПН, ввод), дату отбора пробы и кем выполнен отбор. Часто на шприце ставят краткое условное обозначение, которое расшифровывается в журнале.

Отбор пробы масла в маслоотборник производится при так называемом частичном выделении растворенных в масле газов. Точность результатов анализа здесь значительно выше, чем в предыдущем случае, однако требуемый объем масла велик (несколько литров), что усложняет отбор и транспортировку пробы. Обычно пользуются маслоотборником вместимостью 2,5-3 л, схема которого приведена на рис. 8, В нормальном положении поршень 1 опущен на дно, барботер* 2 с датчиком температуры 3 и закрытым вентилем 4 ввернут в отверстие 5. Вентиль б закрыт. Отверстие 7 в дне маслоотборника закрыто заглушкой 8.
* Приспособление, используемое при выделении из масла растворенных газов

Пробы масла отбирают из патрубка 9, расположенного в поддоне трансформатора и нормально закрытого пробкой. К патрубку присоединяется резиновая трубка диаметром 5-8 мм, имеющая на конце штуцер с накидной гайкой 10. Сливают 1,5-2 л масла. Штуцер 10 переворачивают накидной гайкой вверх (как показано на рис. 8) и регулируют расход масла (примерно 1 мл/с). При таком расходе масло заполняет накидную гайку и медленно стекает по ее краям.
Из маслоотборника вывертывают барботер 2-4 и, нажимая штоком 11 на хвостовик поршня, переводят поршень вверх. Шток вводят через отверстие 7. Переворачивают маслоотборник кверху дном и навертывают накидную гайку 10 на отверстие 5 настолько, чтобы масло перестало подтекать из штуцера. Происходит заполнение маслоотборника. Расход масла при этом должен быть примерно 0,5 л/мин. Когда из отверстия 7 показывается хвостовик поршня 72, следует завернуть на место заглушку 8.

Прекратив подачу масла, но не отсоединяя шланг 9-10 переворачивают маслоотборник дном вниз. Отвернув штуцер 10 и убедившись, что масло полностью заполняет патрубок 5, ввертывают на место барботер 2 с закрытым вентилем 4. Маслоотборник, заполненный маслом, доставляют в лабораторию для анализа.
Во всех случаях главное требование при отборе и доставке пробы масла в лабораторию - обеспечить герметичность и не допустить загрязнения или увлажнения масла. Время хранения пробы до проведения анализа должно быть минимальным (не более суток).
Проведя анализ, лаборатория выдает результаты и, как правило, указывает на отклонение от нормы содержания тех или иных растворенных газов. Однако решение о дальнейшей эксплуатации трансформатора принимает электротехническая служба.
При анализе определяют содержание углекислого газа СО 2 , окиси углерода СО, водорода Н 2 и углеводородов - метана СН 4 , ацетилена С 2 Н 2 , этилена С 2 Н 4 , этана С 2 Н 6 , а также кислорода О 2 и азота N 2 . Однако чаще производится анализ не по всем перечисленным газам, а по части из них, например углекислому газу, ацетилену и этилену. Естественно, чем меньшая номенклатура газов учитывается, тем меньше возможности своевременно выявить начинающееся повреждение трансформатора.
В настоящее время с помощью хроматографического анализа можно определить две группы повреждений силовых трансформаторов:
1) дефекты твердой изоляции (перегревы и ускоренное старение твердой электрической изоляции, частичные разряды в бумажно-масляной изоляции), 2) перегревы металла и частичные разряды в масле (дефекты токоведущих частей, особенно контактных соединений, магнитопровода и конструкционных частей, в том числе с образованием короткозамкнутых контуров и др.).
Для дефектов первой группы характерно выделение углекислого газа и окиси углерода. Для трансформаторов с открытым дыханием и азотной защитой масла в качестве критерия оценки состояния используется концентрация углекислого газа. Установлено, что опасные дефекты первой группы имеют место при концентрациях СО2, превышающих указанные в табл. 3.
О критериях оценки состояния трансформаторов с пленочной защитой масла будет сказано ниже.
Для второй группы дефектов характерно выделение этилена или ацетилена. Могут присутствовать оба этих газа одновременно, а также сопутствующие газы метан и водород. Опасные концентрации приведены в табл.3.
Как следует подходить к решению вопроса о дальнейшей эксплуатации трансформатора? Наибольшую опасность представляют те повреждения первой группы, которые связаны с повреждением твердой изоляции обмоток или отводов. Достаточно какого-либо дополнительного действия, чтобы трансформатор получил повреждение.
Возникающие даже при не очень близком КЗ механические воздействия могут привести к повреждению изоляции в месте возникшего дефекта, образованию дуги и аварийному отключению. Такие трансформаторы следует выводить в ремонт в первую очередь.

Чтобы более правильно решить вопрос о степени срочности вывода трансформатора в ремонт, нужно учитывать ряд дополнительных обстоятельств. Углекислый газ может образоваться и по причинам, не связанным с изоляцией обмоток или отводов. К такому эффекту может привести умеренно повышенный нагрев большой площади металла или сильное старение масла, а также частые перегрузки, перевозбуждения, отказы системы охлаждения. В эксплуатации имели место ошибочные подключения баллона с углекислым газом вместо азота к системе азотной защиты. В этих случаях следует учитывать данные электрических испытаний и химического анализа масла (см. § 4), также рекомендации завода-изготовителя, связанные с конструктивными особенностями и данными о повреждаемости данного типа трансформаторов. Можно провести сравнительный анализ на содержание углекислого газа в трансформаторе того же типа, работающего то же самое время в тех же условиях в аналогичном режиме.

Таблица 3. Предельные концентрации растворенных в масле газов для трансформаторов с открытым дыханием и азотной защитой масла

При выводе в ремонт поврежденная часть твердой изоляции имеет черно-коричневый цвет и отчетливо выделяется на фоне остальной части изоляции. На ней могут быть видны ветвистые побеги, представляющие собой следы разряда.
Дефекты второй группы наиболее опасны в том случае, если они расположены в непосредственной близости от твердой изоляции, также при неисправности токоведущих соединений. Если повреждение затронуло твердую изоляцию, это может быть установлено по росту концентрации углекислого газа, особенно при сравнении с данными анализа для соседнего такого же трансформатора. Опасная неисправность токоведущих частей определяется измерением электрического сопротивления обмоток постоянному току.
Такие трансформаторы следует выводить в ремонт в первую очередь, как и при повреждениях первой группы. В общем случае повышенное содержание этилена и ацетилена при нормальном содержании углекислого газа указывает на перегревы конструкционных частей или магнитопровода. В этом случае капитальный ремонт следует провести в ближайшие 6 мес. Естественно, при решении вопроса о выводе в ремонт нужно учитывать возможность появления газов по иным причинам, не связанным с дефектом самого трансформатора, повреждение двигателей электронасосов системы охлаждения, проникновение газов из контактора устройства РПН и др.
При выводе в ремонт трансформаторов с повреждениями второй группы в месте повреждения находят вязкие или твердые продукты разложения масла черного цвета.
При вводе в работу трансформатора после капитального ремонта хроматографический анализ в течение первого месяца может показать наличие ранее обнаруженных газов. Если дефекты при ремонте были устранены, то концентрация характерных газов (кроме углекислого) в дальнейшем уменьшается, а углекислого газа - не изменяется. Увеличение концентрации свидетельствует о том, что дефект при ремонте не был устранен.
Для трансформаторов, имеющих пленочную защиту масла, а также для других трансформаторов, в которых на основании анализа предполагалось повреждение твердой изоляции, но оно не было выявлено при капитальном ремонте, проводится расширенный анализ растворенных и масле газов. Оценка степени опасности предполагаемого повреждения производится по отношениям концентрации газов в соответствии с данными табл. 4.
Наиболее опасным дефектом является повреждение твердой изоляции, которое сопровождается частичными разрядами в ней. Предположить его наличие можно в том случае, если на него указывают не менее двух отношений в приведенной таблице. Эксплуатация таких трансформаторов допускается только с согласия завода-изготовителя.
Если обнаружены частичные разряды в масле, нужно убедиться, что возникший дефект не затрагивает твердую изоляцию. Для этого хроматографический анализ растворенных в масле газов следует повторять через каждые две недели. Если в течение 3 месяцев отношения не изменяются, то твердая изоляция не затронута.
Дополнительным подтверждением повреждений, выявленных по указанным отношениям, является скорость изменения концентрации газов. Свидетельством наличия опасного дефекта является увеличение концентрации ацетилена при частичных разрядах в масле на 0,004 -0,01 % в месяц и более, при частичных разрядах в твердой изоляции 0,02-0,03 % в месяц. Для перегревов (последняя колонка таблицы) характерно снижение скорости нарастания концентрации газов в первую очередь метана и ацетилена, при этом рекомендуется провести дегазацию масла в баке трансформатора с последующим отбором проб 1 раз в 2 недели.
В общем случае периодичность отбора проб для хроматографического анализа растворенных в масле газов - 1 раз в 6 мес. Для трансформаторов 750 кВ дополнительно производится отбор пробы через 2 недели после включения.
Благодаря высокой эффективности диагностики состояния трансформаторов путем хроматографического анализа растворенных в масле газов в ряде энергосистем (на Украине, в Мосэнерго и др.) уменьшен объем работ по традиционным измерениям характеристик изоляции трансформаторов, требующим их отключения.

Таблица 4. Опасные отношения концентраций растворенных в масле газов в трансформаторах с пленочной защитой масла


Отношение концентраций газов

Отношение концентрации при наличии

частичных разрядов

перегревов токоведущих соединений и элементов конструкции

в твердой изоляции

Основные показатели

Дополнительные показатели

Хроматографический анализ газов растворенных в масле, является специальным методом, служащим для обнаружения повреждений и дефектов конструктивных узлов электрооборудования, но практически не информирующем о качестве и состоянии самого масла. Хроматографический анализ (ХАРГ) позволяет:

  • отслеживать развитие процессов в оборудовании,
  • выявлять дефекты на ранней стадии их развития, не обнаруживаемые традиционными способами,
  • определять предполагаемый характер дефекта и степень имеющегося повреждения
  • ориентироваться при определении места повреждения.
Для оценки состояния маслонаполненного оборудования используются газы: водород (Н2), метан (CH4), этан (C2H6), этилен (C2H4), ацетилен (С2Н2), угарный газ (CO), углекислый газ (CO2). Кроме этого, всегда присутствуют кислород и азот, а их концентрация изменяется в зависимости от герметичности корпуса трансформатора и могут выделяться такие газы как пропан, бутан, бутен и другие, но их исследование в диагностических целях не получило широкого распространения.

Состояние оборудования оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Важно различать нормальные и чрезмерные объемы газа. Нормальное старение или газовая генерация изменяется в зависимости от конструкции трансформатора, нагрузки и типа изоляционных материалов.

В заимосвязь основных газов и наиболее характерных видов дефектов.

Водород (Н2) Дефекты электрического характера: частичные разряды, искровые и дуговые разряды
Метан (CH4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (400-600)°С
или нагрев масла и бумажно-масляной изоляции, сопровождающийся разрядами;
Этан (C2H6) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции в диапазоне температур (300-400)°С;
Этилен (C2H4) Дефекты термического характера: нагрев масла и бумажно-масляной изоляции выше 600°С
Ацетилен (С2Н2) Дефекты электрического характера: электрическая дуга, искрение
У гарный газ (CO) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
Углекислый газ (CO2) Дефекты термического характера: старение и увлажнение масла и/или твердой изоляции;
нагрев твердой изоляции


Дефекты трансформаторов, определяемые с помощью хроматографического анализа:

Наименование дефектов

Основные газы Характерные газы
Перегревы токоведущих соединений

С 2 Н 4 - в случае нагрева масла
и бумажно-масляной
изоляции выше 600°С

Н 2 , С Н 4 и С 2 Н 6

- нагрев и выгорание контактов переключающих устройств;
- ослабление и нагрев места крепления электростатического экрана;
- обрыв электростатического экрана;
- ослабление винтов компенсаторов отводов НН;
- ослабление и нагрев контактных соединений отвода НН и шпильки проходного изолятора;
- лопнувшая пайка элементов обмотки: замыкание параллельных и элементарных проводников обмотки и др

С 2 Н 2 - в случае перегрева масла,
вызванного дуговым разрядом.

Перегревы элементов конструкции остова.
- неудовлетворительная изоляция листов электротехнической стали;
- нарушение изоляции стяжных шпилек или накладок, ярмовых балок с образованием короткозамкнутого контура;
- общий нагрев и недопустимый местный нагрев от магнитных полей рассеяния в ярмовых балках, бандажах,
рессующих кольцах и винтах;
- неправильное заземление магнитопровода;
- нарушение изоляции амортизаторов и шипов поддона реактора, домкратов и прессующих колец
при распрессовке и др.
Частичные разряды Н 2 СН 4 и С 2 Н 2
с малым содержанием
Искровые и дуговые разряды Н 2 или С 2 Н 2 СН 4 и С 2 Н 2
с любым содержанием
Ускоренное старении и/или увлажнение твердой изоляции СО и СO 2
Перегрев твердой изоляции СO 2

Для получения объективных результатов хроматографического анализа трансформаторного масла необходимо квалифицированно произвести отбор проб из маслонаполненного оборудования. Более подробные требования по отбору проб трансформаторного масла представлены в разделе Отбор проб масла

Непрерывный мониторинг технического состояния силовых трансформаторов по всем ключевым параметрам включает в себя контроль:

  • нагрузки по току;
  • уровня масла, а также его температуры;
  • температуры обмотки;
  • сигнализации и др.

Предлагаемые системы мониторинга трансформаторов могут работать как в автономном режиме, так и с интеграцией в АСУТП предприятия. Оперативная работа с архивами и динамический анализ данных позволяют оптимизировать нагрузку и продлить срок службы энергетического оборудования.

Мы предлагаем внедрение следующих систем мониторинга:

  • Qualitrol 509 серии ITM (контроль состояния масляных трансформаторов);
  • 118 ITM (непрерывное наблюдение за «сухими» силовыми установками);
  • 506 VTM/507 ITM (дистанционная регистрация параметров фиксированного оборудования);
  • T/Guard 408 (оптоволоконная система контроля температуры силовых установок посредством специальных датчиков).

Хроматографический анализ трансформаторного масла

Исследование трансформаторного масла на наличие растворенных газов также является одним из ключевых параметров контроля состояния силовых маслонаполненных трансформаторов. По присутствию растворенных опасных газов и их концентрации можно на ранней стадии выявить неисправности конструктивных узлов маслонаполненных трансформаторов и шунтирующих реакторов.

Наиболее востребованным методом непрерывной диагностики является хроматографический онлайн-анализ растворенных газов в трансформаторном масле. В линейке продукции «БО-ЭНЕРГО» представлены поточные онлайн-хроматографы «Серверон», контролирующие от 2 до 8 ключевых газов, изготовленные в соответствии с ТУ-4215-001-70110824-2014 и внесенные в Государственный реестр средств измерений (свидетельство № US.C.31.004.A №56677.

Какие дефекты выявляются хроматографическим анализом трансформаторного масла?

Состояние оборудования оценивается по наличию газов, их концентрации и по скорости ее роста. Если в исследуемой жидкости присутствует водород (H₂), то вероятны дефекты электрического характера, а именно - дуговые и искровые разряды.

Избыток этана (C₂H₆) свидетельствует о появлении термических неисправностей, например, о нагреве изоляции до +300…+400°C. Наличие метана (CH₄) в охлаждающей жидкости сигнализирует о более высокой температуре - до +600°C. Если по результатам мониторинга в трансформаторном масле обнаружен газ этилен (C₂H₄), то перегрев сильный, выше +600 °C.

Присутствие растворенного ацетилена (С₂Н₂) свидетельствует о регулярно возникающем искрении и проскакивающей электрической дуге. Причиной может быть нарушение изоляции стяжных шпилек, листов технической стали или некорректное заземление магнитопровода.

Если в исследуемой жидкости выявлено присутствие СО или СО₂, то это сигнал об ускоренном старении или увлажнении твердой электрической изоляции.

Для силовых агрегатов мощностью свыше 110 кВт хроматографический анализ трансформаторного масла рекомендуется проводить не реже 1 раза в полгода. Наличие специальных вводов дает возможность брать пробы без остановки оборудования.

Диагностика силовых трансформаторов

Рассматриваемые технологии, включая хроматографический анализ трансформаторного масла онлайн, являются неразрушающими методами контроля состояния энергетического оборудования.

Диагностика силовых трансформаторов по такой методике обеспечивает следующие преимущества:

  • оценку технического состояния без вывода из эксплуатации;
  • выявление неисправностей на ранних стадиях;
  • наблюдение за всеми процессами внутри системы;
  • определение оптимальных сроков ремонта.

Прибор для хроматографического разделения и анализа смесей веществ называется хроматографом . Хроматограф состоит из: системы ввода пробы, хроматографической колонки, детектора, системы регистрации и термостатирования, и приспособлений для приема разделенных компонентов. Хроматографы бывают жидкостными и газовыми, в зависимости от агрегатного состояния подвижной фазы. Чаще всего используют проявительную хроматографию.

Хроматограф работает следующим образом. Из баллона в хроматографическую колонку через регуляторы давления и расхода непрерывно подается газ-носитель с переменной либо постоянной скоростью. Колонка помещена в термостат и заполнена сорбентом. Температура поддерживается постоянной, и находится в пределах до 500°С.

Жидкая и газообразная пробы вводятся шприцем. В колонке происходит разделение многокомпонентной смеси на несколько бинарных смесей, в состав которых входит как газ носитель, так и один из анализируемых компонентов. В зависимости от того, насколько компоненты бинарных смесей сорбируемы, смеси поступают в детектор в определенном порядке. По результату детектирования фиксируется изменение концентрации компонентов на выходе. Происходящие в детекторе процессы преобразуются в электрический сигнал, затем записываются в виде хроматограммы.

За последние десять лет широкое распространение в электроэнергетике получил хроматографический анализ трансформаторного масла , показывающий хорошие результаты при диагностике трансформаторов, помогающий выявить растворенные в масле газы, и определить по ним наличие дефектов в трансформаторе.

Электромонтер просто отбирает пробу , доставляет ее в лабораторию, где работник химической службы выполняет хроматографический анализ, затем ему остается сделать правильные выводы из полученных результатов, и принять решение, стоит ли эксплуатировать трансформатор дальше или он нуждается в ремонте либо замене.

В зависимости от способа выделения из трансформаторного масла газов, есть несколько способов забора пробы. Далее рассмотрим два самых популярных способа.

Если выделение растворенных газов будет производиться посредством вакуума, то забор пробы производится в герметичные стеклянные шприцы 5 или 10 мл. На герметичность шприц проверяют так: оттягивая поршень до конца, втыкают конец иглы в пробку, надавливают на поршень, доводя его до середины шприца, затем погружают пробку с воткнутой в нее иглой, вместе со шприцем с вдавленным на половину поршнем, под воду. Если пузырьков воздуха нет, значит шприц герметичен.

В трансформаторе имеется патрубок для забора пробы масла. Патрубок очищают, сливают некоторое количество застоявшегося в нем масла, промывают маслом шприц и маслоотборное приспособление, затем берут пробу. Операция забора пробы выполняется в следующей последовательности. Тройник 5 с пробкой 7 соединяют с патрубком 1 при помощи трубки 2, а трубку 3 соединяют с краном 4.

Вентиль на трансформаторе открывают, затем открывают кран 4, сливают через него до 2 литров трансформаторного масла, затем закрывают. Иглу шприца 6 вводят насквозь в пробку 7 тройника 5, и заполняют маслом шприц. Открывают немного кран 4, выдавливают из шприца масло - это промывка шприца, данную процедуру повторяют 2 раза. Затем набирают пробу масла в шприц, вынимают его из пробки тройника, и втыкают в заранее подготовленную пробку.

Перекрывают вентиль трансформатора, снимают маслоотборную систему. Шприц маркируют, указывая дату, имя сотрудника, взявшего пробу, название объекта, маркировку трансформатора, место отбора масла (бак, ввод), затем помещают шприц в специальную тару, которую отправляют в лабораторию. Часто маркировку делают сокращенно, а расшифровку заносят в журнал.


Если планируется провести частичное выделение растворенных газов, то проба берется в специальный маслоотборник. Точность будет выше, но и объем масла потребуется больший, до трех литров. Поршень 1 изначально опускается на дно, барботер 2, оснащенный термодатчиком 3, при закрытом вентиле 4, вворачивается в отверстие 5, при этом вентиль 6 закрыт. Заглушка 8 запирает отверстие 7 на дне маслоотборника. Пробу берут из патрубка 9, закрытого пробкой, присоединенного к поддону трансформатора. Сливают 2 литра масла.

Трубку с накидной гайкой 10 присоединяют к патрубку. Штуцер с гайкой направляют вверх, позволяя маслу понемногу стекать, не более 1 мл в секунду. Выворачивают барботер 2, и штоком 11 нажимают на поршень 1 через отверстие 7, выводя его вверх. Перевернув маслоотборник, гайку 10 накручивают на отверстие 5 до тех пор, пока масло не перестанет подтекать.

Маслоотбойник заполняется трансформаторным маслом со скоростью пол литра в минуту. При появлении хвостовика 12 поршня 1 в отверстии 7, заглушку 8 устанавливают на место, на отверстие 7. Подачу масла перекрывают, шланг не отсоединяют, переворачивают маслоотборник, отворачивают штуцер 10, убеждаются, что масло доходит до патрубка 5, вворачивают барботер 2 на место, вентиль 4 должен быть закрыт. Маслоотборник отправляют в лабораторию для хроматографического анализа.

Пробы хранятся до анализа не более суток. Лабораторный анализ позволяет получить результаты, указывающие на отклонение содержания растворенных газов от нормы, в связи с чем электротехнической службой принимается решение о дальнейшей судьбе трансформатора.

Хроматографический анализ позволяет определить содержание в масле растворенных: углекислого газа, водорода, окиси углерода, а также метана, этана, ацетилена и этилена, азота и кислорода. Чаще всего анализируют наличие этилена, ацетилена и углекислого газа. Чем меньше количество анализируемых газов, тем меньшее разнообразие начинающихся повреждений выявляется.

На данный момент благодаря хроматографическому анализу возможно выявление двух групп повреждений трансформаторов:

    Дефекты изоляции (разряды в бумажно-масляной изоляции, перегревы твердой изоляции);

    Дефекты токоведущих частей (перегрев металла, разряды в масле).

Дефекты первой группы сопровождаются выделением окиси углерода и углекислого газа. Концентрация углекислого газа служит критерием состояния трансформаторов с открытым дыханием и азотной защитой трансформаторного масла. Определены критические значения концентрации, позволяющие судить об опасных дефектах первой группы, есть специальные таблицы.

Дефекты второй группы характеризуются образованием в масле ацетилена и этилена, и в качестве сопутствующих газов - водород и метан.

Дефекты первой группы, связанные с повреждением изоляции проводников обмоток представляют наибольшую опасность. Даже при небольшом механическом воздействии на место дефекта, уже может образоваться дуга. Такие трансформаторы в первую очередь нуждаются в ремонте.

Но углекислый газ может образовываться и по другим причинам, не связанным с повреждением обмоток, например причинами могут оказаться старение масла или частые перегрузки и перегревы, связанные с отказом системы охлаждения. Были случаи, когда в систему охлаждения по ошибке вместо азота подавали углекислый газ, поэтому важно учесть данные химического анализа и электрических испытаний, прежде чем делать выводы. Можно сравнить данные хроматографического анализа аналогичного трансформатора, работавшего в аналогичных условиях.

При диагностике, место повреждения изоляции будет темно-коричневого цвета, и отчетливо выделится на общем фоне целой изоляции. Возможны следы разряда на изоляции в виде ветвистых побегов.

Дефекты токоведущих соединений, расположенные вблизи твердой изоляции наиболее опасны. Рост концентрации углекислого газа свидетельствует о том, что затронута твердая изоляция, тем более при сравнении данных анализа для аналогичного трансформатора. Измеряют сопротивление обмоток, выявляют неисправность. Трансформаторы с данными дефектами, равно как и с дефектами первой группы, следует ремонтировать прежде всего.

В случае, если при нормальной концентрации углекислого газа превышены ацетилен и этилен, имеет место перегрев магнитопровода или частей конструкции. Такой трансформатор нуждается в капитальном ремонте в течение ближайшего полугода. Важно рассмотреть и иные причины, например связанные с нарушением работы системы охлаждения.

При ремонтном обслуживании трансформаторов с выявленными повреждениями второй группы, обнаруживают твердые и вязкие продукты разложения масла в местах повреждений, они имеют черный цвет. При возобновлении эксплуатации трансформатора после ремонта, скорый анализ, в течение первого месяца после ремонта, скорее всего покажет наличие ранее обнаруженных газов, однако концентрация их будет значительно ниже; концентрация углекислого газа возрастать не будет. Если концентрация станет возрастать, значит дефект остался.

Трансформаторы с пленочной защитой масла и другие трансформаторы, у которых по данным анализа предполагаемое повреждение твердой изоляции не подтвердилось, подвергают расширенному хроматографическому анализу растворенных газов.

Повреждение твердой изоляции, сопровождаемое частыми разрядами, - наиболее опасный вид повреждения. Если на него указывают два и более соотношений концентраций газов, дальнейшая эксплуатация трансформатора рискованна, и допускается лишь с разрешения изготовителя, при этом дефект не должен затрагивать твердую изоляцию.

Хроматографический анализ повторяют каждые две недели, и если на протяжении трех месяцев соотношения концентраций растворенных газов не изменяются, значит твердая изоляция не задета.

Скорость изменения концентрации газов также свидетельствует о дефектах. Ацетилен при частых разрядах в масле увеличивает свою концентрацию на 0,004 - 0,01% за месяц и более, и на 0,02-0,03% за месяц - при частых разрядах в твердой изоляции. При перегревах скорость роста концентрации ацетилена и метана снижается, в таком случае необходима дегазация масла и последующий анализ раз в пол месяца.

Согласно нормативам, хроматографический анализ трансформаторного масла необходимо проводить раз в пол года, а трансформаторы на 750 кВ нуждаются в анализе через две недели после ввода в эксплуатацию.

Эффективная диагностика трансформаторного масла посредством хроматографического анализа позволяет сегодня снизить количество работ по дорогостоящему обслуживанию трансформаторов во многих энергосистемах. Уже не нужно отключать сети для измерения характеристик изоляции, достаточно просто взять пробу трансформаторного масла.

Так, хроматографический анализ трансформаторного масла является на сегодняшний день незаменимым методом контроля дефектов трансформатора на самом раннем этапе их появления, он позволяет определить предполагаемый характер дефектов и степень их развития. Состояние трансформатора оценивается по концентрациям растворенных в масле газов и скорости их роста, сравнением их с граничными значениями. Для трансформаторов напряжением 100 кВ и выше такой анализ должен проводится не реже одного раза в полгода.

Именно хроматографические методы анализа позволяют судить о степени изношенности изоляторов, о перегревах токоведущих частей, о наличии электрических разрядов в масле. Исходя из степени предполагаемой деструкции изоляции трансформатора, на основании данных, полученных после серии анализов, можно судить о необходимости вывода трансформатора из эксплуатации и постановке на ремонт. Чем раньше будут выявлены развивающиеся дефекты, тем меньшим будет риск аварийного повреждения, и тем меньшим окажется объем ремонтных работ.