Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Генератор в асинхронный двигатель: как переделывать. Ветрогенератор из асинхронного двигателя Самодельный электрогенератор из электродвигателя

Генератор в асинхронный двигатель: как переделывать. Ветрогенератор из асинхронного двигателя Самодельный электрогенератор из электродвигателя

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

>

> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

>

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

>

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

>

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

>

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

>

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь

Существующие организации, снабжающие электроэнергией, неоднократно доказывают свою некомпетентность в обслуживании потребителей, и все чаще люди сталкиваются с проблемами подачи электроэнергии. Чаще всего с перебоями в электросети или даже отсутствием электроэнергии сталкиваются владельцы особняков и дач за пределами города. В связи с этим люди запасаются керосиновыми лампами, свечами и бензиновыми генераторами.

Но не всегда есть возможность приобрести себе хороший генератор, и жители вынужденно сталкиваются с вопросом, как сделать генератор своими руками, потратив на это намного меньше, чем на заводской агрегат.

Принцип работы генератора

Пользуясь большим спросом, генератор может быть на базе бензинового или дизельного двигателя. В большинстве случаев главным прибором выработки электроэнергии выступает асинхронный двигатель, с помощью которого производится энергия для рабочей электросети. Бензогенератор с асинхронным двигателем работает с большим КПД , а обороты ротора асинхронного двигателя выше, чем у самого мотора.

Установки с применением асинхронного двигателя применяются не только в бытовых условиях, но и во многих других силовых установках , таких как:

  • Ветровые электростанции.
  • Для работы сварочного аппарата.
  • Для поддержки электроэнергии совместно с небольшой ГЕС.

В большинстве случаев запуск происходит за счет подключения тока, однако, для мини-станций это не совсем рационально, так как генератор должен вырабатывать электроэнергию, а не потреблять. В связи с таким недостатком все чаще производителями предлагаются самовозбуждающиеся устройства , для запуска которых необходимо только последовательное подключение конденсатора.

Благодаря тому, что скорость оборотов ротора асинхронного генератора выше, чем самого мотора, он может производить электроэнергию. В самых обычных моделях генераторов для выработки электричества должно быть не менее 1500 оборотов в минуту.

Превосходство скорости работы ротора при запуске перед синхронной скоростью называют скольжением и вычисляют в процентах от синхронной скорости, но так как статор вращается с большими оборотами , чем ротор, то происходит образование потока заряженных электронов с переменной полярностью.

При запуске подключенный прибор управляет синхронной скоростью и впоследствии - скольжением. При выходе из статора электроны перемещаются по ротору, но активная энергия уже находится в катушках статора.

Принцип работы двигателя заключается в преобразовании механической энергии в электрическую, а для пуска и выработки тока необходим сильный вращательный момент . Наиболее подходящим вариантом, по мнению электриков, является поддержка оптимальной скорости на протяжении всего времени работы генератора.

Преимущества асинхронного генератора

Синхронные и асинхронные генераторы имеют разную конструкцию. Конструкция синхронного более сложная, чувствительность к перепадам напряжения больше, поэтому продуктивность ниже, чем асинхронного. На роторе синхронного мотора размещены магнитные катушки, они усложняют вращение ротора , а ротор асинхронного генератора имеет схожесть с обычным маховиком.

Потеря КПД синхронного генератора из-за конструктивной особенности около 11%, в то время как у асинхронного - потеря до 5%. Поэтому асинхронные устройства более востребованы и в быту, и в промышленности. Нарастание спроса обусловлено не только высоким КПД, но и другими преимуществами:

  • Простая конструкция корпуса, способного защитить от попадания влаги и пыли, что снижает необходимость ежедневного проведения ТО.
  • Устойчивость к перепаду напряжения и наличие выпрямителя, который служит защитой для подключенных электроприборов.
  • Способен питать высокочувствительные приборы, к примеру, сварочные устройства, компьютеры и лампы накалывания.
  • Высокий КПД и минимальная затрата энергии на обогрев самого агрегата.
  • Длительный срок эксплуатации благодаря надежности деталей и их устойчивости к износу при использовании.

Благодаря таким положительным нюансам генератор может эксплуатироваться на протяжении 15 лет, а его конструкция позволяет сделать асинхронный генератор своими руками.

Мотоблок для электрогенератора

Для жителей сел и поселков за городом использование мотоблока для сборки генератора не является новшеством, так как агрегат очень распространен, и многие проводят земельные работы с его помощью, хотя мотоблок, как другая техника, нередко подвергается поломкам .

При больших повреждениях агрегата владельцы покупают новый, но со старым расстаться хочет не каждый, поэтому старые экземпляры могут использоваться для самостоятельного конструирования генератора переменного тока 220 В. Работой двигателя может обеспечиваться оптимальная производительность асинхронного двигателя в пределах вольтажа от 220 до 380. Мощность двигателя нужно выбирать не менее 15 кВт, а частота оборотов вала должна быть от 800 до 1500 об/мин. Такие характеристики необходимы для полного обеспечения электросети жилища. Ведь с маломощным двигателем получить достаточно энергии не выйдет, а создавать генератор для нескольких осветительных приборов нерационально.

Существуют мастера, которые изготавливают ветрогенератор из асинхронного двигателя своими руками, но в любом случае перед сборкой нужно сначала рассчитать мощность потребления электроэнергии зданием. Ведь в небольших дачных домиках может быть один телевизор или дрель, для которых будет достаточно мощности электрогенератора, переделанного из обычной бензопилы.

Подготовка материала и сборка

Покупка асинхронного двигателя грозит большой потерей финансов, а для самостоятельной сборки могут понадобиться минимальные навыки в электрике, детали и инструменты. Но если принято решение сделать генератор переменного тока 220 В своими руками, то к этому необходимо подготовиться:

  1. Для нормальной работы генератора скорость вращения ротора должна быть больше чем обороты двигателя. Поэтому нужно отключить двигатель к сети и вычислить скорость вращения ротора, для этого можно использовать тахометр.
  2. Вычислить рабочую частоту оборотов будущего генератора. К примеру: обороты двигателя - 1200 об/мин, а рабочие обороты генератора будут - 1320 об/мин. Такое значение можно вычислить, добавив к оборотам двигателя 10% показателя тахометра;
  3. Для функционирования асинхронного двигателя необходимы конденсаторы одинаковой емкости для подключения между фазами.
  4. Емкость конденсаторов не должна быть сильно завышенной, иначе неизбежен сильный перегрев генератора.
  5. Конденсаторы должны быть изолированы и обеспечивать высчитанную скорость вращения ротора генератора.

Такое простое устройство уже можно использовать в качестве источника электроэнергии, но так как устройством производится высокое напряжение, то его лучше применять с понижающим трансформатором.

Бензиновый агрегат

Для сборки бензинового прибора необходима установка мотоблока и электродвигателя на одной станине с учетом параллельного расположения валов. Посредством двух шкивов будет передаваться вращательный момент от мотоблока к двигателю. Один шкив нужно установить на вал бензинового агрегата, а второй на электромотор. Благодаря правильному соотношению размера шкивов будет определяться частота оборотов ротора мотора.

После установки всех деталей и подключения ременной передачи можно приступить к электрической части:

  1. Обмотку электромотора необходимо соединить по схеме «звезда».
  2. Подключенные конденсаторы к фазам должны образовать треугольник.
  3. Между концом обмотки средней точкой образуется 220 В, а 380 - между обмотками.

Емкость устанавливаемых конденсаторов подбирается в зависимости от мощности электродвигателя. Устройством вырабатывается электроэнергия, а значит, нужно сделать заземление, в противном случае аппарат может быстро изнашиваться или стать причиной поражения током человека.

В качестве устройства с небольшой мощностью можно использовать однофазный двигатель от стиральной машины, дренажного насоса или другого бытового прибора. Так же как и трехфазный мотор, он должен подключаться параллельно обмотке. Также при конструировании можно использовать конденсатор фазового сдвига, но мощность придется увеличивать до нужного предела.

Такие простые приборы с однофазным мотором можно использовать для освещения дома или подключения маломощных электроприборов. При этом переделка схемы может позволить подключение аппарата к обогревателю или электропечи. Таким же образом могут изготавливаться подобные устройства с использованием неодимовых или других постоянных магнитов.

Достоинства самодельной конструкции

Главным и важным достоинством является экономия. Для самодельного варианта потребуется намного меньше денежных вложений, чем заводские аналоги.

При грамотном проведении сборки своими руками электрооборудование может быть довольно надежным и продуктивным в эксплуатации.

Единственным недостатком такого устройства является то, что для новичка может быть затруднительно разобраться во всех тонкостях сборки и изготовления прибора. При неправильном подключении и сборки возможны необратимые поломки, после чего потраченное время и деньги уйдут впустую.

Гидро- и ветростанции

Кроме бензиновых устройств, существуют и другие конструкции. Привести в движение вал электромотора можно с помощью ветряка или водяного потока. Конструкции не являются самыми простыми, но благодаря им, можно обойтись без использования бензинового или дизельного топлива.

Такое устройство, как гидрогенератор, можно собрать самостоятельно. При наличии протекающей реки возле дома воду можно применить как силу, вращающую вал. При этом в русло реки устанавливается гидроколесо с лопастями. Таким образом создается течение, вращающее турбину и вал электромотора, а в зависимости от количества установленных турбин и лопастей будет увеличиваться или уменьшаться поток воды и напряжение генератора.

Устройство ветрового агрегата немного сложнее, так как ветровая нагрузка не является постоянной величиной. Обороты ветряка, которые передаются на вал мотора должны регулироваться в зависимости от необходимой частоты оборотов электромотора. Регулятором в этом механизме выступает редуктор. Сложность конструкции заключается в том, что при повышении ветра необходим понижающий редуктор, а при понижении ветра - повышающий.

Все асинхронные устройства, вырабатывающие электроэнергию, имеют повышенный уровень опасности, в связи с этим им нужна изоляция. С таким оборудованием необходимо обращаться очень аккуратно и держать его скрытым от воздействия внешних погодных условий:

  • Автономные устройства оснащаются измерительными датчиками для фиксации данных о работе. Рекомендуется установка тахометра и вольтметра.
  • Установка выключателя или отдельных кнопок включения и выключения.
  • Агрегат заземляется в обязательном порядке.
  • КПД асинхронного устройства может снижаться на 30−50%, что является неизбежным явлением при преобразовании электрической энергии из механической.
  • Необходимо следить за температурой установки и режимом работы, так как аппарат может перегреваться на холостом ходу.

Придерживайтесь таких простых правил в эксплуатации, и прибор будет служить на протяжении длительного времени и не предоставит неудобств.

Хотя самодельное приспособление и является простым в сборке, оно при этом требует определенных усилий, сосредоточенности при работе с конструкцией и правильным подключением электросети. Устройство такого типа целесообразно собирать в финансовом плане при наличии работоспособного неиспользуемого двигателя. В противном случае основной элемент прибора будет стоить половину цены рыночной установки. Ветровой или другой генератор лучше собирать из проверенных и работоспособных частей для повышения срока эксплуатации генератора.

Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.

Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.

Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:

Принцип работы устройства

Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.

В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.

Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.

Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.

Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:

  1. Минимальная мощность установки - 1.3 кВт.
  2. Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
  3. Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
  4. Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
  5. При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением - ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями , которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.

Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:

Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.

Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.

Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Ответ на вопрос, как сделать самостоятельно электрогенератор из электродвигателя, основывается на знании устройства этих механизмов. Основная задача заключается в преобразовании двигателя в машину, выполняющую функции генератора. При этом следует продумать способ, как весь этот узел будет приводиться в движение.

Где используется генератор

Оборудование данного вида находит применение в совершенно разных областях. Это может быть промышленный объект, частное или загородное жилье, стройплощадка, причем любых масштабов, гражданские здания разного целевого использования.

Одним словом, совокупность таких узлов, как электрогенератор любого типа и электродвигатель, позволяют реализовать следующие задачи:

  • Резервное электроснабжение;
  • Автономная подача электроэнергии на постоянной основе.

В первом случае речь идет о страховочном варианте на случай возникновения опасных ситуаций, таких, как перегрузка сети, аварии, отключения и прочее. Во втором случае электрогенератор разнотипный и электродвигатель позволяют получить электричество в местности, где отсутствует централизованная сеть. Наряду с этими факторами присутствует еще одна причина, по которой рекомендуется использование автономного источника электроэнергии – это необходимость подачи стабильного напряжения на вход потребителя. Подобные меры нередко принимаются, когда необходимо ввести в работу оборудование с особо чувствительной автоматикой.

Особенности устройства и существующие виды

Чтобы определиться с тем, какой электрогенератор и электродвигатель выбрать для реализации поставленных задач, следует представлять себе, в чем заключается разница между существующими видами автономного источника энергоснабжения.

Бензиновые, газовые и дизельные модели

Основное отличие – тип топлива. С этой позиции различают:

  1. Бензиновый генератор.
  2. Дизельный механизм.
  3. Устройство на газу.

В первом случае электрогенератор и содержащийся в конструкции электродвигатель по большей части используется для обеспечения электроэнергией на короткие сроки, что обусловлено экономической стороной вопроса ввиду высокой стоимости бензина.

Преимущество дизельного механизма заключается в том, что на его обслуживание и эксплуатацию потребуется значительно меньшее количество топлива. Дополнительно дизельный электрогенератор автономного типа и электродвигатель в нем будут работать длительный период времени без отключений благодаря большим ресурсам двигателя.

Устройство на газу является отличным вариантом на случай организации постоянного источника электроэнергии, так как топливо в данном случае всегда под рукой: подключение к газовой магистрали, использование баллонов. Поэтому стоимость эксплуатации такого агрегата будет ниже ввиду доступности топлива.

Основные конструктивные узлы такой машины тоже отличаются по исполнению. Двигатели бывают:

  1. Двухтактные;
  2. Четырехтактные.

Первый вариант устанавливается на устройства меньшей мощности и габаритов, тогда как второй – используется на более функциональных аппаратах. В генераторе имеется узел – альтернатор, другое его название «генератор в генераторе». Существует два его исполнения: синхронный и асинхронный.

По роду тока различают:

  • Однофазный электрогенератор и, соответственно, электродвигатель в нем;
  • Трехфазное исполнение.

Чтобы понять, как сделать электрогенератор из асинхронного электродвигателя, важно понимать принцип действия этого оборудования. Так, основа функционирования заключается в преобразовании разных видов энергий. В первую очередь происходит переход кинетической энергии расширения газов, возникающих при сгорании топлива, в механическую. Это происходит с непосредственным участием кривошипно-шатунного механизма при вращении вала двигателя.

Преобразование механической энергии в электрическую составляющую происходит посредством вращения ротора альтернатора, в результате чего образуется электромагнитное поле и ЭДС. На выходе после стабилизации выходное напряжение попадает к потребителю.

Делаем источник электроэнергии без узла привода

Наиболее распространенным способом для реализации такой задачи является попытка организовать энергоснабжение посредством асинхронного генератора. Особенностью данного метода является приложение минимума усилий в плане монтажа дополнительных узлов для корректной работы такого устройства. Это обусловлено тем, что данный механизм функционирует по принципу асинхронного двигателя и продуцирует электроэнергию.

Смотрим видео, безтопливный генератор своими силами:

При этом ротор вращается с намного большей скоростью, чем смог бы выдавать синхронный аналог. Сделать электрогенератор из асинхронного электродвигателя своими руками вполне можно, не используя при этом дополнительных узлов или особых настроек.

В результате принципиальная схема устройства останется практически нетронутой, но появится возможность обеспечить электроэнергией небольшой объект: частный или загородный дом, квартиру. Применение таких устройств довольно обширно:

  • В качестве двигателя для ;
  • В виде небольших ГЭС.

Чтобы организовать действительно автономный источник энергоснабжения, электрогенератор без приводящего в работу двигателя должен функционировать на самовозбуждении. А это реализуется посредством подключения конденсаторов в последовательном порядке.

Смотрим видео, генератор своими руками, этапы работ:

Другая возможность выполнить задуманное – использовать двигатель Стирлинга. Его особенностью является преобразование тепловой энергии в механическую работу. Другое название такого узла – двигатель внешнего сгорания, а если говорить точнее, исходя из принципа работы, то, скорее, двигатель внешнего нагрева.

Это обусловлено тем, что для эффективного функционирования устройства требуется значительный перепад температур. В результате роста этой величины повышается и мощность. Электрогенератор на двигателе внешнего нагрева Стирлинга может работать от любого источника тепла.

Последовательность действий при самостоятельном изготовлении

Чтобы превратить двигатель в автономный источник электроснабжения, следует несколько изменить схему, подключив конденсаторы к обмотке статора:

Схема включения асинхронного двигателя

При этом будет протекать опережающий емкостной ток (намагничивающий). В результате образуется процесс самовозбуждения узла, а величина ЭДС соответственно изменяется. На этот параметр в большей мере влияет емкость подключенных конденсаторов, но нельзя забывать и о параметрах самого генератора.

Чтобы устройство не грелось, что обычно является прямым следствием неправильно подобранных параметров конденсаторов, нужно руководствоваться специальными таблицами при их выборе:

Эффективность и целесообразность

Прежде, чем решать вопрос, где купить автономный электрогенератор без двигателя, нужно определить, действительно ли хватит мощности такого устройства для обеспечения потребностей пользователя. Чаще всего самодельные аппараты этого рода обслуживают маломощных потребителей. Если решено сделать своими руками электрогенератор автономный без двигателя, купить необходимые элементы можно в любом сервисном центре или магазине.

Но преимуществом их является сравнительно небольшая себестоимость, учитывая, что достаточно лишь немного изменить схему, подключив несколько конденсаторов подходящей емкости. Таким образом, при наличии некоторых знаний можно соорудить компактный и маломощный генератор, который будет обеспечивать достаточным количеством электроэнергии для питания потребителей.