Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Механическая рубка металла. Ударные инструменты

Механическая рубка металла. Ударные инструменты

Рубкой называется операция по снятию с заготовки слоя материала, а также разрубание металла (листового, полосового, профильного) на части режущими инструментами (зубилом, крейц- мейселем или канавочником при помощи молотка). Точность обработки при рубке не превышает 0,7 мм. В современном машиностроении к процессу рубки металла прибегают лишь в тех случаях, когда заготовка по тем или иным причинам не может быть обработана на металлорежущих станках. Рубкой выполняют следующие работы : удаление лишних слоев материала с поверхностей заготовок (обрубка литья, сварных швов, прорубание кромок под сварку и пр.); обрубку кромок и заусенцев на кованых и литых заготовках; разрубание на части листового материала; вырубку отверстий в листовом материале; прорубание смазочных канавок и др.

Производится рубка в тисках на плите или на наковальне. Заготовки больших размеров при рубке закрепляют в стуловых тисках. Обрубка литья, сварных швов и приливов в крупных деталях осуществляется на месте. Ручная рубка весьма тяжелая и трудоемкая операция, поэтому необходимо стремиться максимально ее механизировать.

Инструменты, применяемые при рубке

Инструменты, применяемые при рубке, относятся к режущим, они изготавливаются из углеродистых инструментальных сталей марок У7, У8, У8А. Твердость рабочей части режущих инструментов после термической обработки должна составлять не менее HRC 53… 56 на длине 30 мм, а ударной части — HRC 30… 35 на длине 15 мм. Размеры режущих инструментов для рубки зависят от характера выполняемых работ и выбираются из стандартного ряда. В качестве ударного инструмента при рубке используют молотки различных размеров и конструкций. Наиболее часто при рубке используют слесарные молотки с круглым бойком различной массы.

Слесарное зубило (рис. 2.20) состоит из трех частей: рабочей, средней, ударной. Как и при любой обработке резанием, режущая часть инструмента представляет собой клин (рис. 2.20, а).

Действие клинообразного инструмента на обрабатываемый металл изменяется в зависимости от положения клина и направления действия силы, приложенной к его основанию. Различают два основных вида работы клина при рубке:

Ось клина и направление действия силы, приложенной к нему, перпендикулярны к поверхности заготовки. В этом случае заготовка разрубается на части (рис. 2.20, б);

Ось клина и направление действия силы, приложенной к его основанию, образуют с поверхностью заготовки угол, меньший 90°. В этом случае с заготовки снимается стружка (рис. 2.20, в).

Плоскости, ограничивающие режущую часть инструмента (см. рис. 2.20, в), называются поверхностями. Поверхность, по которой сходит стружка в процессе резания, называется передней, а противоположная ей поверхность, обращенная к обрабатываемой поверхности заготовки, — задней. Их пересечение образует режущую кромку инструмента. Угол между поверхностями, образующими рабочую часть инструмента, называется углом заострения и обозначается греческой буквой b (бета). Угол между передней и обработанной поверхностями называется углом резания и обозначается буквой 8 (дельта). Угол между передней поверхностью и плоскостью, проведенной через режущую кромку перпендикулярно поверхности резания, называется передним углом и обозначается буквой у (гамма).

Угол, образуемый задней и обработанной поверхностями, называется задним углом и обозначается буквой а (альфа).

Чем меньше угол заострения режущего клина, тем меньшее усилие необходимо прикладывать при резании. Однако с уменьшением угла резания уменьшается и поперечное сечение режущей части инструмента, а следовательно, и его прочность. В связи с этим величину угла заострения необходимо выбирать с учетом твердости обрабатываемого материала, которая определяет силу резания, необходимую для отделения слоя металла с поверхности заготовки, и силу удара по инструменту, необходимую для создания усилия резания.

С увеличением твердости материала необходимо увеличивать и угол заострения режущего клина, так как сила удара по инструменту достаточно велика и его поперечное сечение должно обеспечить необходимую для восприятия этой силы площадь поперечного сечения. Значения этого угла для различных материалов составляют приблизительно: чугун и бронза — 70°; сталь средней твердости — 60°; латунь, медь — 45°; алюминиевые сплавы — 35°.

Задний угол а определяет величину трения между задней поверхностью инструмента и обрабатываемой поверхностью заготовки, его величина колеблется в пределах от 3 до 8 Регулируется величина заднего угла изменением наклона зубила относительно обрабатываемой поверхности.

Крейцмейселъ (рис. 2.21) отличается от зубила более узкой режущей кромкой. Крейцмейсель применяют для вырубания канавок, прорубания шпоночных пазов и тому подобных работ. С целью предупреждения заклинивания крейцмейселя при работе его рабочая часть имеет постепенное сужение от режущей кромки к рукоятке. Термическая обработка рабочей и ударной частей, а также геометрические параметры режущей части и порядок определения углов заострения режущей части у крейцмейселей точно такие же, как и у зубила.

Канавочник (рис. 2.22) применяется для вырубания смазочных канавок во вкладышах и втулках подшипников скольжения и профильных канавок специального назначения. Режущие кромки ка- навочника могут иметь прямолинейную или полукруглую форму, которая выбирается в зависимости от профиля прорубаемой канавки. Канавочник отличается от зубила и крейцмейселя только формой рабочей части. Требования в отношении термической обработки и выбора углов заточки для канавочников такие же, как для зубила и крейцмейселя.

Слесарные молотки (рис. 2.23) применяются при рубке в качестве ударного инструмента для создания силы резания и бывают двух видов — с круглым (рис. 2.23, а) и квадратным (рис. 2.23, б) бойком. Противоположный бойку конец молотка называют носком, он имеет клинообразную форму и скруглен на конце. Молоток закрепляют на ручке, которую при работе удерживают в руке, нанося удары по инструменту (зубилу, крейцмейселю, канавочнику). Для надежного удерживания молотка на рукоятке и предупреждения его соскакивания во время работы используют деревянные или металлические клинья (обычно один-два клина), которые забивают в рукоятку (рис. 2.23, в) там, где она входит в отверстие молотка.

Рубку заготовок небольшого размера (до 150 мм) из листового материала, широких поверхностей стальных и чугунных заготовок небольших размеров, а также прорубание канавок во вкладышах подшипников выполняют в тисках.

На плите или наковальне выполняют разрубание заготовок на части или вырубание по контуру заготовок из листового материала. Рубку на плите применяют в тех случаях, когда обрабатываемую заготовку невозможно или сложно закрепить в тисках.

Для того чтобы придать рабочей части зубила, крейцмейселя или канавочника необходимый угол заострения, нужно произвести его заточку.

Заточка режущего инструмента осуществляется на заточных станках (рис. 2.24, а). Затачиваемый инструмент устанавливают на подручник 3 и с легким нажимом медленно перемещают его по всей ширине шлифовального круга. В процессе заточки инструмент периодически охлаждают в воде.

Заточку поверхностей режущего клина ведут поочередно — то одну сторону, то другую, что обеспечивает равномерность заточки и получение правильного угла заострения рабочей части инструмента. Шлифовальный круг в процессе работы должен быть закрыт кожухом 2. Защита глаз от попадания абразивной пыли производится с помощью специального защитного экрана 1 или защитных очков. Контроль угла заострения режущего инструмента в процессе заточки осуществляют при помощи специального шаблона (рис. 2.24, б).

Рубкой называется слесарная операция, при которой с помощью режущего инструмента с заготовки или детали удаляют лишние слои металла или заготовку разрубают на части. При современных способах обработки материала или заготовок рубка металла - подсобная операция.

Рубку металла производят в тисках, на плите и на наковальне с помощью слесарного молотка, слесарного зубила, крейцмейселя, кузнечного зубила и кувалды.

Рубка металла бывает горизонтальная и вертикальная в зависимости от расположения зубила во время операции. При горизонтальной рубке, производимой в тисках, заднюю грань зубила устанавливают к плоскости губок тисков почти горизонтально, под углом не более 5°С. Вертикальную рубку выполняют на плите или наковальне. Зубило устанавливают вертикально, а перерубаемый материал укладывают на плите горизонтально.

Рис. 3. Тиски параллельные:

1 - червячный винт, 2, 3 - подвижная и неподвижная губки, 4 - поворотный круг,

5 - винт поворотного круга, 6 - нижняя плита

Рис. 4. Тиски стуловые:

1 - рычаг, 2,3- подвижная и неподвижная губки, 4 - втулка, 5-пружина, 6- лапа, 7 - распорная втулка

Молотки с круглыми бойками применяют, когда требуется большая сила и меткость удара, а с квадратными- для более легких работ. Молотки изготовляют из инструментальной стали У7. Рабочие части молотка закаливают и отпускают. Молоток должен быть в исправном состоянии, без трещин, плен, раковин и других дефектов.

Для слесарной рубки применяют молотки массой 400, 500, 600 и 800 г. Молотки насаживают на ручки из древесины твердых и вязких пород (береза, клен, дуб, рябина). Ручки должны быть овальной формы, с гладкой и чистой поверхностью, без сучков и трещин. Длина ручки молотка массой 400-600 г равна 350 мм, массой 800 г -380-450 мм.

Рабочую часть зубила и крейцмейселя ( , е, г) закаливают на длину не менее 30 мм, а головку - слабее лезвия (на длину около 15-25 мм), чтобы при ударе молотком она не крошилась и не трескалась. Вся остальная часть зубила и крейцмейселя должна оставаться мягкой. Зубила и крейцмейсели не должны иметь трещин, плен и других пороков.

Рис. 5. Инструмент для рубки: а - Слесарный молоток с круглым бойком, б - слесарный молоток с квадратным бойком, в - слесарное зубило, г - крейцмейсель

Рис. 6. Заточка зубила на заточном станке: а - Приемы держания зубила при заточке, б - шаблон для проверки правильности угла заточки


Наиболее часто используют зубила длиной 175 и 200 мм с лезвиями шириной 20 и 25 мм. Для прорубания канавок в стали и чугуне применяют креицмеисели длиной 150-175 мм с лезвием шириной 5-10 мм. Головки зубила и креицмеиселя отковывают на конус, что обеспечивает правильное направление удара молотком и уменьшает возможность образования грибовидной шляпки на головке.

Угол заточки зубил и крейцмейселей зависит от твердости обрабатываемого металла. Для рубки чугуна, твердой стали и твердой бронзы угол заточки инструмента равен 70°, для рубки средней и мягкой стали -60°, для рубки латуни, меди и цинка -45°, для рубки очень мягких металлов (алюминия, свинца) - 35-45°.

Слесарный инструмент затачивают на заточных станках с абразивными кругами. Во время заточки рабочая часть инструмента (лезвие) сильно нагревается и может произойти ее отпуск. При отпуске твердость закалки теряется и инструмент становится негодным для дальнейшей работы. Во избежание этого рабочую часть инструмента во время заточки охлаждают водой. На рис. 6 показано, как надо держать зубило при заточке и как проверять правильность заточки угла,

Инструменты, применяемые при рубке, относятся к режущим, они изготавливаются из углеродистых инструментальных сталей марок У7, У8, У8А. Твердость рабочей части режущих инструментов после термической обработки должна составлять не менее HRC 53... 56 на длине 30 мм, а ударной части - HRC 30... 35 на длине 15 мм. Размеры режущих инструментов для рубки зависят от характера выполняемых работ и выбираются из стандартного ряда. В качестве ударного инструмента при рубке используют молотки различных размеров и конструкций. Наиболее часто при рубке используют слесарные молотки с круглым бойком различной массы.

Слесарное зубило (рисунок 33) состоит из трех частей: рабочей, средней, ударной. Как и при любой обработке резанием, режущая часть инструмента представляет собой клин (рисунок 33, а).

Действие клинообразного инструмента на обрабатываемый металл изменяется в зависимости от положения клина и направления действия силы, приложенной к его основанию. Различают два ос новных вида работы клина при рубке:

Ось клина и направление действия силы, приложенной к нему перпендикулярны к поверхности заготовки. В этом случае заготовка разрубается на части (рисунок 33, б);

Ось клина и направление действия силы, приложенной к его основанию, образуют с поверхностью заготовки угол, меньший 90°. В этом случае с заготовки снимается стружка (рисунок 33, в).

а – общий вид зубила и его рабочей части; б – угол заострения и действие сил; в - элементы резания при рубке; Р – сила резания; w, w 1 , w 2 – составляющие силы резания; β, β 1 , β 2 – углы заострения; γ – передний угол; α – задний угол; β – угол резания

Рисунок 33 – Зубило слесарное

Плоскости, ограничивающие режущую часть инструмента (рисунок 1, в), называются поверхностями. Поверхность, по которой сходит стружка в процессе резания, называется передней, а проти­воположная ей поверхность, обращенная к обрабатываемой по­верхности заготовки, - задней. Их пересечение образует режущую кромку инструмента. Угол между поверхностями, образующими рабочую часть инструмента, называется углом заострения и обо­значается греческой буквой β (бета). Угол между передней и обра­ботанной поверхностями называется углом резания и обозначается буквой δ (дельта). Угол между передней поверхностью и плоско­стью, проведенной через режущую кромку перпендикулярно по­верхности резания, называется передним углом и обозначается бук­вой γ (гамма).

Угол, образуемый задней и обработанной поверхностями, на­зывается задним углом и обозначается буквой α (альфа).

Чем меньше угол заострения режущего клина, тем меньшее уси­лие необходимо прикладывать при резании. Однако с уменьшени­ем угла резания уменьшается и поперечное сечение режущей части инструмента, а следовательно, и его прочность. В связи с этим ве­личину угла заострения необходимо выбирать с учетом твердости обрабатываемого материала, которая определяет силу резания, необходимую для отделения слоя металла с поверхности заготов­ки, и силу удара по инструменту, необходимую для создания уси­лия резания.


С увеличением твердости материала необходимо увеличивать и угол заострения режущего клина, так как сила удара по инстру­менту достаточно велика и его поперечное сечение должно обеспе­чить необходимую для восприятия этой силы площадь поперечно­го сечения. Значения этого угла для различных материалов состав­ляют приблизительно: чугун и бронза - 70°; сталь средней твердо­сти - 60°; латунь, медь - 45 °; алюминиевые сплавы - 35 °.

Задний угол α определяет величину трения между задней поверх­ностью инструмента и обрабатываемой поверхностью заготовки, его величина колеблется в пределах от 3 до 8°. Регулируется вели­чина заднего угла изменением наклона зубила относительно обра­батываемой поверхности.

Крейцмейсель (рисунок 34) отличается от зубила более узкой режу­щей кромкой. Крейцмейсель применяют для вырубания канавок, прорубания шпоночных пазов и тому подобных работ. С целью предупреждения заклинивания крейцмейселя при работе его рабо­чая часть имеет постепенное сужение от режущей кромки к рукоят­ке. Термическая обработка рабочей и ударной частей, а также гео­метрические параметры режущей части и порядок определения уг­лов заострения режущей части у крейцмейселей точно такие же, как и у зубила.

Рисунок 34 - Крейцмейсель

Канавочник (рисунок 35) применяется для вырубания смазочных канавок во вкладышах и втулках подшипников скольжения и про­фильных канавок специального назначения. Режущие кромки ка-навочника могут иметь прямолинейную или полукруглую форму, которая выбирается в зависимости от профиля прорубаемой ка­навки. Канавочник отличается от зубила и крейцмейселя только формой рабочей части. Требования в отношении термической об­работки и выбора углов заточки для канавочников такие же, как для зубила и крейцмейселя.

Рисунок 35 - Канавочник

Слесарные молотки (рисунок 36) применяются при рубке в каче­стве ударного инструмента для создания силы резания и бывают двух видов - с круглым (рисунок 36, а) и квадратным (рисунок 36, б) бойком. Противоположный бойку конец молотка называют нос­ком, он имеет клинообразную форму и скруглен на конце. Молоток закрепляют на ручке, которую при работе удерживают в руке, нанося удары по инструменту (зубилу, крейцмейселю, канавочнику). Для надежного удерживания молотка на рукоятке и предуп­реждения его соскакивания во время работы используют деревян­ные или металлические клинья (обычно один-два клина), которые забивают в рукоятку (рисунок 36, в) там, где она входит в отверстие молотка.

а – с круглым бойком; б – с квадратным бойком; в – способы крепления ручки

Рисунок 36 – Молотки слесарные

Рубку заготовок небольшого размера (до 150 мм) из листового материала, широких поверхностей стальных и чугунных заготовок небольших размеров, а также прорубание канавок во вкладышах подшипников выполняют в тисках.

На плите или наковальне выполняют разрубание заготовок на части или вырубание по контуру заготовок из листового материа­ла. Рубку на плите применяют в тех случаях, когда обрабатывае­мую заготовку невозможно или сложно закрепить в тисках.

Для того чтобы придать рабочей части зубила, крейцмейселя или канавочника необходимый угол заострения, нужно произве­сти его заточку.

Заточка режущего инструмента осуществляется на заточных станках (рисунок 37, а). Затачиваемый инструмент устанавливают на подручник 3 и с легким нажимом медленно перемещают его по всей Ширине шлифовального круга. В процессе заточки инструмент пе­риодически охлаждают в воде. Заточку поверхностей режущего клина ведут поочередно - то одну сторону, то другую, что обеспе­чивает равномерность заточки и получение правильного угла за­острения рабочей части инструмента. Шлифовальный круг в про­цессе работы должен быть закрыт кожухом 2. Защита глаз от попа­дания абразивной пыли производится с помощью специального защитного экрана 1 или защитных очков. Контроль угла заостре­ния режущего инструмента в процессе заточки осуществляют при помощи специального шаблона (рисунок 37, б).

а – заточной узел станка; б – шаблон для контроля углов заточки; 1 - защитный экран; 2 – кожух; 3 – подручник

Рисунок 37 – Заточной станок

Этот инструмент представляет собой металлический стержень, один конец которого (боек) имеет форму усеченного конуса с полукруглым основанием, а второй (лезвие) – клина. Оба конца закалены и отпущены.
Зубило используют для обработки металла. Его длина составляет примерно 100–200 мм, ширина лезвия – 5–52 мм. Лезвие инструмента должно быть хорошо заточено, так как от этого зависит сила удара (чем острее лезвие, тем меньшее усилие прилагают при ударе).

Угол заточки лезвия зубила различен. Лезвием с тупым углом заточки работают с твердыми металлами. При этом следует учитывать, что сталь средней жесткости обрабатывают лезвием с углом заточки не менее 60°; чугун, бронзу, твердую сталь – 70°.

Меньшего угла заточки лезвия зубила требует работа с мягкими металлами – такими, как медь и латунь. Угол заточки лезвия при этом должен составлять примерно 45°. Цинк и алюминий обрабатывают зубилом, угол заточки лезвия которого составляет 35°.Заточку лезвия инструмента производят на точильном станке. Зернистость электрокорундных кругов при этом должна быть 40, 50 или 63.

Для контроля угла заточки зубила используют специальный шаблон, представляющий собой брусок из металла, на котором вырезаны 4 паза с углами разной величины.

Основные виды и причины дефектов при гибке.

При изучении различных приемов гибки рассматривались причины возможного появления дефектов в поковках. К основным дефектам, возникающим в процессе гибки, относятся: утяжина в месте изгиба, трещины, складки, неточности размеров и формы.

Образование у т я ж и н ы, подробно рассмотренное ранее, приводит не только к искажению формы поковки, но и к уменьшению прочности детали. Утяжину ликвидируют как предварительным набором металла в месте изгиба, так и высадкой заготовки в процессе гибки.

Появление трещин на внешней поверхности заготовки на участке гибки чаще всего возможно, если изгибают металл с низкой пластичностью, т. е. в холодном или подстывшем состоянии. Гибка, например, заготовки из дюралюминия в холодном состоянии сопровождается не только образованием трещин, но и полным разрушением металла. Высокие требования к режиму гибки предъявляются при обработке высокоуглеродистых и легированных сталей и других сплавов. Выбор рационального режима гибки заключается в правильном выборе температуры обработки, схемы гибки, оптимального минимального радиуса изгиба, последовательности переходов и др.

При гибке заготовок на большие углы необходимо, чтобы с внутренней стороны угла поковки не образовывались складки, так как они являются концентраторами напряжений и снижают прочность детали.



Дефект в виде неточности размеров появляется чаще всего при неточном определении длины (объема) исходной заготовки. Если при расчете допущена ошибка, поковка получается либо длиннее требуемой, либо короче.

Неточность формы является следствием неправильно выбранных переходов гибки, некачественной подготовки исходной заготовки, неправильного подбора необходимого инструмента или способа гибки, а также недостаточного опыта кузнеца.

Резка. Назначение и виды резки. Устройство ручных и рычажных ножниц для резки листового металла, ручной ножовки. Способы резки металла ножовкой, ножницами. Приводные ножницы; рычажные, эксцентриковые, роликовые, вибрационные, область их применения, устройство и принцип действия.

Разрезкой называется операция разделения материала (предмета) на две отдельные части с помощью ручных ножниц, зубила или специальных механических ножниц. Распиловкой называется операция разделения материала (предмета) с помощью ручной либо механической ножовки или круглой пилы.

Назначение и виды резки.

Качество металлоизделий в различных отраслях экономики (промышленном производстве, строительстве, легкой промышленности и др.) напрямую влияет на степень безопасности конечного применения изделия (строительный крепеж, перекрытие в ангаре, металлическая дверь, трубопровод). Таким образом, задача обеспечения высокого качества металлоконструкций является ключевой, одним решением которой является надежное производственное оборудование. Гильотины и другие станки для резки металла предназначены для резания или рубки листового металла, а также заготовок металлических. В настоящее время подобное оборудование используется в различных сферах промышленной деятельности предприятий. Широкое распространение станки получили благодаря своей высокой эффективности, что способствует оптимизации производственного процесса, повышает качество выпускаемой продукции и минимизирует издержки.



В соответствии с различными потребностями процессов и целей производства выделяют следующие виды оборудования, представленные в каталоге нашей компании: станки для лазерной и плазменной резки, гильотины, пресс-ножницы, координатно-просечные пресса. Современные производственные установки позволяют осуществлять резку металла с высокой точностью , необходимой для клиента.

Главной характеристикой любого оборудования для рубки металла является точность выполнения операций.

Выделяют несколько классов оборудования для резки металла:

А – оборудование особо высокой точности;

В – высокоточное оборудование;

С – обычные станки для резки металла;

П – станки для резки повышенной точности;

Н – станки нормальной точности.

Самое элементарное оборудование для резания находит свое применение в транспортировки металла, тогда как станки для лазерной резки применяют при производстве нестандартных деталей. Гильотинное оборудование и различные пресса применяют для рубки труб различных диаметров, металлопроката, обеспечивая, тем самым, их качественную резку (отсутствие заусенцев, наплывов, смятия кромок). Таким образом, в зависимости от потребностей и задач производственного цикла существуют различные виды станков для резки металла в зависимости от назначения.

Рубка металла, инструменты и технологические особенности которой мы рассмотрим в этой статье – достаточно трудоемкий процесс, который требует выполнения не только соблюдения техники безопасности, но и особого контроля со стороны человека.

На сегодняшний день существует огромное количество различных инструментов для рубки металла, а также иных вспомогательных средств для его нарезки. В данном случае нам предстоит подробно ознакомиться с процедурой рубки металла и рассмотреть при помощи, каких инструментов она выполняется.

Основные предназначения

В основном такая процедура, как рубка металла на гильотине или ином станке и приспособлении применяется в следующих случаях:

  1. Срубание или удаление излишних слоев металла с поверхности заготовочных деталей.
  2. Выравнивание поверхностей, что имеют неровную форму.
  3. Процедура удаления твердой корки и окалины.
  4. Обрубание заусенцев и иных неровностей на кованных и литых деталях.
  5. Обрубание излишнего материала, его концов, краев и отдельных листов.
  6. Рубка металла гильотиной на части (для листового и сортового материала).
  7. Проделывание отверстий, намеченных определенным контуром.
  8. Прирубание кромок встык под сварку.
  9. Обрубание головок заклепок, впоследствии – их удаления.
  10. Вырубание смазочных каналов и шпоночных пазов.

В данном случае наиболее популярный станок – это гильотина, которая посредством высокого давления резким движением разрубает материал. Рубка листового металла гильотиной также возможна, однако здесь требуется более высокое давление в сравнении с небольшими деталями и заготовками.

Как уже было указано выше, для рубки металла в основном используют гильотины, однако плазменную резку никто еще не отменял. В данном случае рассмотрим плюсы и минусы каждого из вариантов в отдельности.

Рубка и гибка металла при помощи гильотины

Гильотины стоят не так дорого и имеют массу преимуществ, а именно:

  • Быстрая нарезка металлических деталей и удаление излишков с заготовок.
  • Гильотины просты в работе, а также не несут какой-либо опасности для человека при правильном использовании.
  • В настоящее время существуют механизмы, которые позволяют не только рубить, но также гнуть металл, придавая ему различную форму.
  • Гибка листового металла возможна даже при использовании компактной гильотины.
  • Достаточно легко выполнить ремонт станка самостоятельно в силу того, что здесь отсутствуют сложные механизмы.
  • Гильотины хорошо подходят для вырубки небольших отверстий и каналов.

Однако имеются у этих станков и недостатки, а именно:

  1. Они обладают большой массой, что в некоторых случаях усложняет их использование.
  2. Давление, создаваемое при рубке металла, выполняется за счет воздуха, из-за чего требуется постоянное подключение к компрессору.
  3. Цена хорошей гильотины достаточно высокая, однако это гарантирует долгий срок ее службы и качество обработки металла, гибка которого была на ней произведена.
  4. Подобный гибочный станок хоть и прост в ремонте и обслуживании, однако требует подбора специальных деталей.

На фоне огромного числа преимуществ гильотин, небольшой список их недостатков выглядит незначительным.

Плазменная резка

Такой вспомогательный способ нарезки металла отличается следующими качествами:

  • быстро, ровно и качественно разрезает металл любой толщины;
  • имеет компактные габариты;
  • удобство в применении.

На фоне небольшого списка преимуществ, у плазменной резки имеется масса недостатков, а именно:

  1. Небезопасна при работе.
  2. Требует постоянного подключения к баллонам с кислородом;
  3. При использовании необходимо внимательно следить за температурой, иначе есть риск подорваться.
  4. Работа с плазменной резкой требует использования защитного шлема или линз, так как от высокой температуры и яркой искры человек может ослепнуть.
  5. С ее помощью можно только резать металл, гнуть или делать в нем каналы невозможно.

Плазменная резка имеет еще огромное множество недостатков, однако она ценится за быстроту. С ее помощью можно нарезать листовой металл под размер в считаные минуты.

Гибка металла

Гибка – это процесс, при котором металл под высоким давлением кривошипного пресса принимает изогнутую форму. В данном случае предусмотрено использование гильотинного оборудования, которое помимо рубки способно также гнуть металл под высоким давлением.

Таким образом, ярким примером гибочных гильотин и их работы, является изготовление прямоугольных вентиляционных систем, а также множества других деталей, которые впоследствии соединяются при помощи клепок, образуя единую воздушно-вентиляционную систему.

Важно. Оборудование для резки, рубки и гибки металла, требует соответствующего обслуживания и ремонта. Именно поэтому после покупки, рекомендуется подобрать мастерскую, которая оказывает соответствующие услуги.

Покупка оборудования и дальнейшее его обслуживание

Услуги по покупке оборудования для резки и обработки металлопроката предоставляют крупные машиностроительные заводы, где производятся станки с гильотинными и иными функциями. Их можно найти в интернете на официальных ресурсах производителей в Москве, Новосибирске, Челябинске и многих других городах России.

Обслуживанием станков занимаются как сами производители, так и сторонние компании, чья деятельность направлена на обслуживание и ремонт крупного оборудования металлопроката. Найти такие сервисы вы также можете в интернете либо запросив рекомендации у производителя оборудования.

Видео: рубка металла гильотиной.

Итоги

В современной жизни металлообработка претерпела ряд инновационных изменений, появились автоматизированные гильотины и иные станки, которые при правильно заданной программе способны изготовить заготовку без изъянов.

Впоследствии эта деталь не нуждается в дополнительной обработке и ее сразу можно отправлять покупателю. Конечно, ряд отдельных случаев требует непосредственного человеческого контроля и вмешательства, однако основную работу выполняет оборудование при помощи заданной программы.

Металлообработка будет востребована всегда, в силу того, что этот материал используется повсеместно. Именно поэтому гильотины и другое оборудование изготавливаются с расчетом на то, что оно будет служить не одно десятилетие. Но это возможно лишь при условии регулярного ремонта и обслуживания станков.