Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Противопожарные двери и ворота. Основные понятия об объемно-планировочных решениях зданий Уход за противопожарной дверью

Противопожарные двери и ворота. Основные понятия об объемно-планировочных решениях зданий Уход за противопожарной дверью

    Приложение А (обязательное). Определение предельного состояния конструкций по потере несущей способности в зависимости от деформаций

Межгосударственный стандарт ГОСТ 30247.1-94
"Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции"
(введен в действие постановлением Минстроя РФ от 23 марта 1995 г. N 18-26)

Elements of building constructions fire-resistance test methods. Loadbearing and separating constructions

Взамен СТ СЭВ 1000-78, СТ СЭВ 5062-85

1 Область применения

1.2. Стандарт применяют для:

Несущих, самонесущих и навесных стен и перегородок без проемов;

Покрытий и перекрытий без проемов с подвесными потолками (при применении их для повышения предела огнестойкости конструкции) или без них;

Колонн и столбов;

Балок, ригелей, элементов арок, ферм и рам, а также других несущих и ограждающих конструкций.

При установлении пределов огнестойкости конструкций в целях определения возможности их применения в соответствии с противопожарными требованиями нормативных документов (в том числе при сертификации) следует применять методы, установленные настоящим стандартом.

ГОСТ 30247.0-94 Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

СТ СЭВ 383-87 Пожарная безопасность в строительстве. Термины и определения

3 Определения

В настоящем стандарте применяют следующие термины.

Несущие конструкции (элементы) - конструкции, воспринимающие постоянную и временную нагрузку, в том числе нагрузку от других частей зданий.

Огнестойкость конструкции - по СТ СЭВ 383.

Самонесущие конструкции - конструкции, воспринимающие нагрузку только от собственного веса.

Ограждающие конструкции - конструкции, выполняющие функции ограждения или разделения объемов (помещений) здания. Ограждающие конструкции могут совмещать функции несущих (в том числе самонесущих) и ограждающих конструкций.

4 Стендовое оборудование

4.2 При испытании ограждающих конструкций регулирующее устройство системы дымовых каналов должно обеспечивать избыточное давление в огневом пространстве печи. При испытании вертикальных ограждающих конструкций избыточное давление должно поддерживаться на высоте не менее чем верхние 2/3 проема печи.

Через 5 мин после начала испытания избыточное давление должно составлять Па:

При испытании горизонтальных элементов - на расстоянии 100 мм от обогреваемой поверхности образца;

При испытании вертикальных элементов - на высоте, равной 3/4 вертикального размера проема печи, считая от низа.

5 Температурный режим

По ГОСТ 30247.0.

6 Образцы для испытаний конструкций

Образцы для испытаний конструкций должны соответствовать ГОСТ 30247.0 и иметь проектные размеры.

Если образцы таких размеров испытать не представляется возможным, то минимальные размеры образцов и проемов печей принимают такими, чтобы обеспечить минимальные размеры зоны огневого воздействия на образец в соответствии с приведенными в таблице 1.

Таблица 1

Наименование конструкции Минимальные размеры зоны
огневого воздействия на образец
Ширина Длина Высота
Стены и перегородки


двум сторонам

Покрытия и перекрытия, опирающиеся по
четырем сторонам

Балки и другие горизонтальные
стержневые конструкции

Колонны, столбы и другие вертикальные
стержневые конструкции

3,0 - 3,0

7 Проведение испытаний

7.2.1 Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать расчетным схемам, принятым в технической документации.

7.2.2 Испытательную нагрузку устанавливают из условия создания в расчетных сечениях образцов конструкций напряжений, соответствующих их проектным значениям или технической документации.

7.2.3 При определении проектных значений напряжений следует учитывать только постоянные и временные длительные нагрузки в их расчетных значениях с коэффициентом надежности, равным 1.

7.2.4 При приложении нагрузки необходимо обеспечить условие, чтобы при деформации образца грузы не смещались и не влияли на величину предела огнестойкости вследствие изменения условий теплообмена с окружающей средой.

Нагрузку устанавливают не менее чем за 30 мин до начала испытания и поддерживают (с точностью ) постоянной в течение всего времени испытания.

7.3 Расстановка термопар

7.3.1 Среднюю температуру на необогреваемой поверхности образцов ограждающих конструкций (стен, перегородок, перекрытий и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар. При этом одну термопару располагают в центре, а остальные - в середине прямых, соединяющих центр и углы проема печи.

7.3.2 В случае испытания образцов конструкций, состоящих из отдельных элементов, необходимо, чтобы их стыковые соединения не совпадали с местами установки термопар, предназначенных для измерения средней температуры необогреваемой поверхности.

7.3.3 Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности образцов ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей и т.п.).

При определении средней температуры необогреваемой поверхности эти точки в расчет не принимают.

Места расположения термопар для измерения температуры на необогреваемой поверхности образца ограждающей конструкции в любом случае должны располагаться не ближе 100 мм от края проема печи.

7.3.4 При испытании колонн, столбов, балок, элементов ферм и других стержневых конструкций термопары для измерения температуры материалов конструкции, при необходимости выполнения таких измерений, устанавливают в плоскостях, перпендикулярных продольной оси образца, расположенных не реже чем через 1 м друг от друга и не ближе 200 мм от внутренней поверхности печи. Одна из этих плоскостей должна быть расположена в центре длины образца.

7.4 Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; покрытия и перекрытия - снизу; балки - с трех сторон; колонны, столбы и фермы - с четырех или с трех сторон с учетом реальных условий использования и наихудшего ожидаемого результата испытания.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, многослойных несимметричных - с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

8 Предельные состояния

8.1 При испытании несущих и ограждающих конструкций различают следующие предельные состояния.

8.1.1 Потеря несущей способности R вследствие обрушения конструкции или возникновения предельных деформаций, значения которых приведены в приложении А .

8.1.2 Потеря теплоизолирующей способности I вследствие повышения температуры на необогреваемой поверхности конструкции в среднем более чем на 140°С или любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания или более 220°С независимо от температуры конструкции до испытания.

8.1.3 Потеря целостности Е в результате образования в конструкции сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. В процессе испытания потерю целостности определяют при помощи тампона по ГОСТ 30247.0 , который помещают в металлическую рамку с держателем и подносят к местам, где ожидается проникновение пламени или продуктов горения, и в течение 10 с держат на расстоянии 20-25 мм от поверхности образца.

Время от начала испытания до воспламенения или возникновения тления со свечением тампона является пределом огнестойкости конструкции по признаку потери целостности.

Обугливание тампона, происходящее без воспламенения или без тления со свечением, не учитывают.

8.2 Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:

Для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов R;

Для наружных несущих стен и покрытий - потеря несущей способности R и целостности Е, для наружных ненесущих стен - Е;

Для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности I и целостности Е;

Для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности R, Е, I соответственно.

9 Оценка результатов испытания



Что такое предел огнестойкости EI?

Современные строительные нормы предъявляют повышенные требования к огнезащите и пожаробезопасности зданий. Для того чтобы обеспечить эти требования, использование классических строительных материалов за счет утолщения ширины металлического листа и применение других огнестойких материалов, не всегда возможно и экономически целесообразно. В таких случаях на помощь приходят специально разработанные огнезащитные материалы (покрытия, краски, составы, лаки и другие). отличается от друг друга естественно по назначению, типу материалы и еще одному параметру, пределу огнестойкости. Именно на нем и остановимся подробнее.

Критерии определения предела огнестойкости

Под пределом огнестойкости понимают предельное время воздействия на конструкцию высокими температурами, по истечении которого у элемента наблюдается хотя бы один из признаков предельного состояния. Данная информация указывается в названии огнезащитных материалов и измеряется в минутах.

К признакам предельного состояния элемента относятся:

  • утрата теплоизолирующей способности;
  • потеря целостности;
  • нарушение несущей конструкции.

Для огнезащиты класса EI необходимо в течение определенного времени выдержать температуру до 180 градусов с обратной, холодной стороны, не обращенной к огню. Время указывается в минутах рядом с EI.

Обозначения предела огнестойкости

Требования к пределу огнестойкости элементов и строительных конструкций указаны в ГОСТ 30247.0-94. Согласно данному ГОСТу огнестойкость обозначается одной или несколькими прописными буквами латинского алфавита и цифрами, обозначающими время упорности в минутах.

Латинские буквы указывают предельные состояния строительных конструкций по огнестойкости:

  • E - потеря целостности в результате образования в конструкциях сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя;
  • I - потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных для данной конструкции значений;
  • R - потеря несущей способности вследствие обрушения конструкции или возникновения предельных деформаций;

То есть огнезащита с маркировкой EI60 - материал с пределом огнестойкости по потере целостности и теплоизолирующей способности через 60 минут. Причем независимо от того, какое из двух последних предельных состояний наступит ранее.

Наша компания предлагает широкий диапазон огнезащиты с различным пределом огнестойкости. Более подробную информацию об огнезащите и ее стоимости вы можете либо у наших менеджеров(), либо в соответствующем разделе каталога продукции («Огнезащита конструкций» и ).

Несущая способность

Максимальная нагрузка, которую могут нести строительные конструкции, их элементы, а также грунты оснований без потери их функциональных качеств.

Огнестойкость ЖБК. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Общие принципы расчета пределов огнестойкости ЖБК и способы повышения их пределов огнестойкости. Огнестойкость железобетонных конструкций (ЖБК). В условиях пожара предел огнестойкости железобетонных конструкций наступает, как правило: 1) за счет снижения прочности бетона при его нагреве 2) теплового расширения и температурной ползучести арматуры 3) возникновения сквозных отверстий или трещин в сечениях конструкции 4) в результате утраты теплоизолирующей способности Наиболее чувствительными к воздействию пожара являются изгибаемые железобетонные конструкции: плиты, балки, ригели, прогоны. Их предел огнестойкости обычно находится в пределах R50-R90 Столь малое значение пределов огнестойкости изгибаемых элементов объясняется тем, что рабочая арматура растянутой зоны этих конструкций, которая вносит основной вклад в их несущую способность, защищена от пожара лишь тонким защитным слоем бетона. Это и определяет быстроту прогрева рабочей арматуры конструкции до критической температуры. Огнестойкость сжатых железобетонных элементов исчерпывается при пожаре за счет снижения прочности, поверхностных, наиболее прогреваемых слоев бетона и сопротивления рабочей арматуры при нагреве. Это приводит к быстрому снижению несущей способности конструкции при пожаре. В момент времени воздействия пожара, когда несущая способность конструкции снизится до уровня рабочих нагрузок, и наступит ее предел огнестойкости по признаку «R». Для железобетонных колонн предел огнестойкости обычно находится в пределах R90-R150. Предельные состояния по огнестойкости для ЖБК. Факторы, влияющие на величину пределов огнестойкости ЖБК. Предельными состояниями по огнестойкости для ЖБК являются: 1) потеря прочности (R) 2) потеря теплоизолирующей способности (I) 3) потеря целостности (E) В отличие от металлических конструкций, для которых основополагающей величиной при оценке предела огнестойкости по потере прочности (R) является приведенная толщина (tred) поперечного сечения, для оценки огнестойкости железобетонной конструкции по признаку потери прочности (R) необходимо знать: 1) вид бетона 2) миним. расстояние от обогреваемой поверхности до оси рабочей арматуры 3) размеры сечения конструкции 4) схему опирания. Для оценки огнестойкости железобетонной конструкции по признаку потери теплоизолирующей способности (I) необходимо знать: 1) вид бетона 2) толщину конструкции (для конструкции с внутренними пустотами – эффективную толщину конструкции). Расчет огнестойкости любых строительных конструкций по признаку потери целостности (E) является очень сложной технической задачей и, как правило, не проводится. Огнестойкость железобетонных конструкций зависит от многих факторов: конструктивной схемы, геометрии, уровня эксплуатационных нагрузок, толщины защитных слоев бетона, типа арматуры, вида бетона, и его влажности и др. Общие принципы расчета пределов огнестойкости ЖБК Расчеты пределов огнестойкости ЖБК, также как и для металлических конструкций связаны с решением прочностной (статической) и теплотехнической задач. В отличие от металлической конструкции, состоящей только из одного материала – металла, предел огнестойкости ЖБК утрачивается в результате утраты прочностных свойств, как несущей металлической арматуры, так и собственно бетона. Утрата прочностных свойств металлической арматуры происходит в результате нагрева ее до критической температуры (), которая, в свою очередь, зависит от напряжений в сечении металлической арматуры (от приложенной нагрузки), вида ЖБК, схемы опирания и нагружения ЖБК, марки металла арматуры. Утрата прочностных свойств бетона также происходит в результате нагрева его до критической температуры (), при которой считается, что бетон мгновенно утрачивает свои прочностные свойства.

19. Предел огнестойкости конструкций и их предельные состояния по огнестойкости в соответствии с Федеральным законом № 123-Ф3. Предел огнестойкости конструкции (заполнения проемов противопожарных преград) – промежуток времени от начала огневого воздействия в условиях стандартных испытаний до наступления одного из нормированных для данной конструкции (заполнения проемов противопожарных преград) предельных состояний.

Ст.35 123-ФЗ : Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний. Наступление пределов огнестойкости несущих и ограждающих строительных конструкций в условиях стандартных испытаний или в результате расчетов устанавливается по времени достижения одного или последовательно нескольких из следующих признаков предельных состояний:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

3. Предел огнестойкости для заполнения проемов в противопожарных преградах наступает при потере целостности (Е), теплоизолирующей способности (I), достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).

4. Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности.

5. Условные обозначения пределов огнестойкости строительных конструкций содержат буквенные обозначения предельного состояния и группы.

Строительные конструкции зданий, сооружений и строений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости:

1) ненормируемый;

2) не менее 15 минут;

3) не менее 30 минут;

4) не менее 45 минут;

5) не менее 60 минут;

6) не менее 90 минут;

7) не менее 120 минут;

8) не менее 150 минут;

9) не менее 180 минут;

10) не менее 240 минут;

11) не менее 360 минут.

Строительные конструкции зданий и сооружений в зависимости от их способности сопротивляться воздействию пожара и распространению его опасных факторов в условиях стандартных испытаний подразделяются на строительные конструкции со следующими пределами огнестойкости :

1) ненормируемый; 2) не менее 15 минут; 3) не менее 30 минут; 4) не менее 45 минут;

5) не менее 60 мин.; 6) не менее 90 минут; 7) не менее 120 минут; 8) не менее 150 минут;

9) не менее 180 минут; 10) не менее 240 минут; 11) не менее 360 минут.

Пределы огнестойкости строительных конструкций определяются в условиях стандартных испытаний .

Пределы огнестойкости строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическим методом, установленным нормативными документами по пожарной безопасности .

Методы определения пределов огнестойкости строительных конструкций и признаков предельных состояний устанавливаются нормативными документами по пожарной безопасности .

Фактический предел огнестойкости строительных конструкций во многих странах определяют экспериментальным путем посредством проведения натурных огневых испытаний строительных конструкций. Метод натурных огневых испытаний регламентирован международным стандартом ISO/DIS 834 "Испытание на огнестойкость элементов строительных конструкций". В России с 01.01.96 г. пределы огнестойкости строительных конструкций и их условные обозначения устанавливают по ГОСТ 30247, ГОСТ 51136, ГОСТ Р 53307 и ГОСТ Р 53308 по времени наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний.

В ГОСТ 30247.0-94 приведены общие положения, в том числе определения терминов, используемых при установлении огнестойкости конструкций, формулировка сущности методов испытания на огнестойкость, общие требования к испытательному оборудованию, температурному режиму, образцам и процедуре проведения испытаний.

В этом же стандарте перечислены основные виды предельных состояний конструкций по огнестойкости, основные положения по оценке результатов испытаний, требования к протоколу испытаний. Стандарт устанавливает для одной и той же конструкции различные пределы огнестойкости по парным признакам наступления предельного состояния. Так, испытания стены на огнестойкость могут быть продолжены до полного ее разрушения, а в процессе испытаний будут установлены пределы ее огнестойкости по признаку потери теплоизолирующей способности и по признаку потери целостности в зависимости от того, где установлена несущая стена. Требования по ее теплоизолирующей способности могут быть следующими:

для межквартирной стены – 30 мин., межсекционной – 45 мин., внутриквартирной – 15 минут. Но по несущей способности она должна выдерживать, например:

Все 120 минут в зданиях I-ой степени огнестойкости;

90 минут в зданиях II -ой степени огнестойкости;

45 минут в зданиях III-ой степени огнестойкости;

15 минут в зданиях IV-ой степени огнестойкости.

В ходе проектирования данные особенности должны учитываться и это, в конечном итоге, должно выразиться в выборе наиболее приемлемых строительных материалов, входящих в состав строительной конструкции, и главным образом, в экономии финансовых средств.

В соответствии со статьей 35, ч.2 и ч.5 Технического регламента о требованиях пожарной безопасности строительные конструкции по предельному состоянию на огнестойкость подразделяются на следующие виды и имеют буквенные обозначения:

1) потеря несущей способности (R);

2) потеря целостности (Е);

3) потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I) или достижения предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

1. Потеря несущей способности(R) в виде обрушения конструкции либо возникновения предельной деформации (в зависимости от типа конструкции).

Числовые значения величин предельных деформаций для различных типов конструкций приведены в приложении "А" ГОСТ 30247.1-94. Для изгибаемых конструкций оно составляет величину L/20, либо если скорость нарастания деформаций составит L 2 /(9000 h) см/мин (где L – длина конструкции, см; h – расчетная высота поперечного сечения (толщина) конструкции, см.

Для вертикальных конструкций предельным состоянием по огнестойкости следует считать условие, когда вертикальная деформация достигает L/100 или скорость нарастания деформаций достигает 10 мм/мин - для образцов высотой 3 0,5 м.

По первому предельному состоянию конструкций по огнестойкости оценивают конструкции несущих стен, покрытий, перекрытий (балок, ферм, колонн, арок, рам) и узлов, их соединяющих.

Предел огнестойкости узлов крепления и сочленения строительных конструкций должен быть не ниже требуемого предела огнестойкости самих конструкций.

2. Потеря целостности (Е) или дефектность структуры ограждающей конструкции в результате образования сквозных трещин, отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя. Оценивается по их количеству и размерам (длиной, шириной и глубиной), измеряемым с помощью специальных калиброванных щупов и игл, оптических луп или микроскопов, ультразвукового диагностирования; путем простукивания конструкции, обратив внимание на
звук: неплотный бетон издает глухой звук, при наличии отслоений -
дребезжащий, при плотном бетоне звук звонкий.

3. Потеря теплоизолирующей способности (I) , т. е. прогрев конструкций до температур, превышение которых может вызвать самовоспламенение горючих материалов, находящихся в смежных помещениях.

Установлено, что сквозной прогрев конструкции до температуры порядка 220 0 С уже может представлять опасность самовоспламенения различных твердых и жидких веществ. Поэтому потеря теплоизолирующей способности строительной конструкции при пожаре наступает при превышении температуры на не обогреваемой поверхности по сравнению с начальной:

– приращение температуры более чем на 140 0 C (по измерениям пятью термопарами);

– в любой точке этой поверхности приращение температуры более чем на 180 0 C;

– или абсолютная температура равна 220 0 C в любой точке поверхности, независимо от первоначальной температуры конструкции до испытания.

Таким образом, первое предельное состояние конструкции по огнестойкости (R) характеризует потерю конструкцией несущей способности, второе(Е) и третье (I) – ограждающей.

Образцы несущих и самонесущих конструкций должны испытываться под нагрузкой. Распределение нагрузки и условия опирания образцов должны соответствовать принятым в технической документации. Величину испытательной нагрузки устанавливают из условия создания в поперечных сечениях образцов конструкции таких напряжений, которые предусмотрены в конструкции по проекту или технической документации. При определении величины проектных напряжений учитывают только постоянные и временные длительные нагрузки в их расчетных значениях с коэфициентом надежности равным 1.

Образцы наружных стен испытывают при воздействии тепла со стороны, обращенной при эксплуатации к помещению; балки – с трех сторон, а колонны, столбы и фермы – с четырех или с трех сторон - с учетом реальных условий использования.

Образцы конструкций однослойных и симметричных многослойных внутренних стен испытывают с одной стороны, моногослойных несимметричных – с каждой стороны, кроме тех случаев, когда неблагоприятная сторона может быть заранее установлена или известно направление огневого воздействия.

В процессе испытания регистрируют следующие параметры:

а) время наступления предельных состояний конструкции по огнестойкости и их вид;

б) температуру в печи, на не обогреваемой поверхности ограждающей конструкции, а также в других предварительно определенных местах.

Термопары для измерения температуры среды в огневой камере печи должны быть установлены не менее чем в пяти местах. Конец термопар следует устанавливать на расстоянии 100 мм от образца – конструкции.

Среднюю температуру не обогреваемой поверхности образцов ограждающих конструкций (стеновых панелей, плит перекрытий, перегородок и др.) определяют как среднее арифметическое показаний не менее чем пяти термопар.

Для определения температуры в любой точке поверхности образца следует устанавливать термопары (или использовать переносную термопару) в таких местах не обогреваемой поверхности ограждающих конструкций, в которых ожидается появление максимальной температуры (например, в зоне ребер, стыков, металлических закладных деталей). При определении средней температуры не обогреваемой поверхности образца эти точки в расчет не принимают.

в) величину избыточного давления в печи (при испытании ограждающей конструкции на газодымонепроницаемость). Оно должно составлять 10 ( 2) Па;

г) величину деформации (при испытании несущей конструкции);

д) время появления пламени на не обогреваемой поверхности образца (ограждающей конструкции) определяют с помощью ватных тампонов;

е) время появления и характер трещин, отверстий, отслоений, а также другиет явления (например, нарушение условий опирания, появление дыма).

Приведенный перечень измеряемых параметров и регестрируемых явлений может дополняться и изменяться в соответствии с требованиями методов испытаний конкретных видов конструкций.

Испытания должны продолжаться до наступления одного или, по возможности, последовательно всех предельных состояний конструкций по огнестойкости, нормируемых для испытываемой конструкции. Результаты, полученные при испытании, могут быть использованы для оценки пределов огнестойкости расчетными методами других аналогичных (по форме, материалам, конструктивному исполнению) конструкций. В свою очередь, стандарт допускает определять пределы огнестойкости строительных конструкций расчетным методом, при этом испытания можно не проводить. Расчетный метод не распространяется на конструкции, огнестойкость которых может характеризоваться потерей плотности.

Если для конструкции нормируют (или устанавливают) различные пределы огнестойкости по различным предельным состояниям, обозначение предела огнестойкости состоит из двух или трех частей, разделенных между собой наклонной чертой, например:

R120/ЕI 60 – предел огнестойкости 120 мин – по потере несущей способности; предел огнестойкости 60 мин – по потере целостности или теплоизолирующей способности, независимо от того, какое из этих двух предельных состояний наступит ранее.

При различных значениях пределов огнестойкости, регламентируемых разными предельными состояниями, обозначение числовых значений времени перечисляется по убыванию.

Цифровой показатель в обозначении предела огнестойкости должен соответствовать одному из чисел следующего ряда: 15, 30, 45, 60, 90, 120, 150, 180, 240, 360, т.е. должны быть кратными 15, а при получении экспериментальных или расчетных промежуточных показателей необходимо принимать меньшее числовое значение из этого ряда.

Пределы огнестойкости запроектированных или реально существующих конструкций принято называть фактическими, а определяемые условиями безопасности или нормами,- требуемыми и обозначать, соответственно, П ф и П тр. Фактические и требуемые пределы огнестойкости конструкций нормируются и учитываются пи проектировании зданий и сооружений. Требования безопасности считаются выполненными при выполнении условия: П ф ≥ П тр

Огнестойкость строительных конструкций

зданий и сооружений

5.1. Строительные конструкции в аспекте обеспечения противопожарной защиты зданий.

Строительные конструкции, рассчитанные по всем правилам строительной механики, как правило, эксплуатируются много десятков лет. Однако в условиях пожара они могут разрушиться в течение нескольких часов или даже минут.

При этом большая часть материального ущерба от пожара обуславливается именно разрушением строительных конструкций.

Устойчивость СК к воздействию пожара влияет и на процесс тушения пожара, т.к. обрушение конструкций представляет большую опасность для персонала объекта и для пожарных. При этом, если СК обрушаются еще до момента ликвидации пожара, его дальнейшее тушение не дает какого-либо эффекта и становится бесполезным.

Современные СК с добавками органических составляющих в условиях пожара могут не только разрушаться, но также в ряде случаев воспламеняться, распространять пламя по своей поверхности, гореть, выделять токсичные продукты горения. Это существенно увеличивает продолжительность пожара и значение его опасных факторов.

5.2. Пожарно-техническая классификация строительных конструкций.

С точки зрения поведения во время возникновения и развития пожара строительные конструкции (СК) характеризуются огнестойкостью и пожарной опасностью:

Показателем огнестойкости СК является предел огнестойкости;

Пожарную опасность СК характеризует класс ее пожарной опасности .
5.3. Предел огнестойкости (ФЗ №123)
Предел огнестойкости строительных конструкций устанавливается по времени (в минутах) наступления одного или последовательно нескольких, нормируемых для данной конструкции, признаков предельных состояний.
Различают следующие основные виды предельных состояний строительных конструкций по огнестойкости:

Потеря несущей способности вследствие обрушения конструкции или возникновения предельных деформаций (R);

Потеря целостности в результате образования в конструкциях сквозных трещин или отверстий, через которые на необогреваемую поверхность проникают продукты горения или пламя (Е);

Потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных для данной конструкции значений (I);

Достижение предельной величины плотности теплового потока (W);

Потеря дымогазонепроницаемости (S).
5.4. Критерии наступления предельных состояний строительной конструкции при нагреве в условиях пожара (ГОСТ 30247.1).
Критерий потери несущей способности СК

а) обрушение конструкции

б) возникновение предельных деформаций:

Для изгибаемых конструкций следует считать, что предельное состояние наступило, если:

а) прогиб достиг величины L/20;

б) скорость нарастания деформаций достигла L 2 /(9000 . h) (см/мин),

где L - пролет, см; h - расчетная высота сечения конструкции, см.

Для вертикальных конструкций предельным состоянием следует считать условие, когда вертикальная деформация достигает L/100 или скорость нарастания вертикальных деформаций достигает 10 мм/мин. для образцов высотой (3,0±0,5) м.
Критерий потери целостности СК

Потеря целостности (E) наступает в результате образования в конструкциях сквозных трещин или отверстий, через которые на необогреваемую поверхность приникают продукты горения или пламя. В процессе испытания потерю целостности определяют при помощи тампона из хлопка или натуральной ваты, который помещают в металлическую рамку с держателем и подносят к местам, где ожидается проникновение пламени или продуктов горения, и в течение 10 с держат на расстоянии 20-25 мм от поверхности образца.

Время от начала испытания до воспламенения или возникновения тления со свечением тампона является пределом огнестойкости конструкции по признаку потери целостности.

Обугливание тампона, происходящее без воспламенения или без тления со свечением, не учитывают.

Размеры тампона должны быть 100 х 100 х 30 мм, масса от 3 до 4 г. До использования тампон в течение 24 ч выдерживают в сушильном шкафу при температуре (105+ 5) °С. Из сушильного шкафа тампон вынимают не ранее; чем за 30 мин до начала испытания. Повторное применение тампона не допускается.
Критерий потери теплоизолирующей способности СК

Потеря теплоизолирующей способности (I) констатируется в случае повышения температуры на необогреваемой поверхности конструкции в среднем более чем на 140 °С или любой точке этой поверхности более чем на 180°С в сравнении с температурой конструкции до испытания, или более 220°С независимо от температуры конструкции до испытания.
Таблица 5.1.

Критерии огнестойкости


Критерии огнестойкости

R

I

E

Горизон-тальные

а) разрушение

а),

(о С)

б)
(о С),

в)
(о С),

воспламенение тампона из ваты или хлопка, продуктами горения, выходящими из трещин конструкций


б)



в)
,

L(см), h(см), V(см/мин.)


Верти-

кальные


а) разрушение

б)



в) V > 10 мм/мин.

при L=(3,0+ 0,5) м

Критерий потери дымогазонепроницаемости
Потеря дымогазонепроницаемости S определяется временем от начала нагрева и нагружения избыточным давлением испытываемой конструкции до момента уменьшения сопротивления дымогазопроницанию этой конструкции ниже минимально допустимого значения.

Удельное сопротивление дымогазопроницанию конструкций дверей различных типоразмеров не должно быть менее 1,96・10 5 м 3 /кг.

Критерий достижения предельной величины плотности теплового потока (ПТП)

При испытании вертикальных конструкций со светопрозрачными элементами, один из приемников теплового излучения устанавливаются на расстоянии (500 ± 10) мм от геометрического центра необогреваемой поверхности конструкции. Другие - на таком же расстоянии элементов, где ожидается наибольшая величина теплового излучения.

Горизонтальные конструкции со светопрозрачными элементами на предел огнестойкости по признаку W (достижения предельной величины плотности теплового потока) не испытываются.

Результаты испытаний оценивают по времени достижения предельной величины ПТП – 3,5 кВт/м 2 .
5.5. Нормирование пределов огнестойкости строительных конструкций различных типов
Для нормирования пределов огнестойкости несущих и ограждающих конструкций используют следующие предельные состояния:

Для колонн, балок, ферм, арок и рам - только потеря несущей способности конструкции и узлов - R;

Для наружных несущих стен и покрытий - потеря несущей способности и целостности - R, E, для наружных ненесущих стен - E;

Для ненесущих внутренних стен и перегородок - потеря теплоизолирующей способности и целостности - E, I;

Для несущих внутренних стен и противопожарных преград - потеря несущей способности, целостности и теплоизолирующей способности - R, E, I;

Предел огнестойкости окон устанавливается только по времени наступления потери целостности – Е.
Для светопрозрачных ограждающих конструкций и дверей (с площадью остекления не менее 25%) дополнительно нормируется предел огнестойкости по признаку достижения предельной величины плотности теплового потока – W.
Предел огнестойкости по признаку потери дымогазонепроницаемости (S) нормируется только для заполнения дверных проёмов в противопожарных преградах.

5.6. Обозначения пределов огнестойкости строительных конструкций (ГОСТ 30247.0)
Обозначение предела огнестойкости строительной конструкции состоит из условных обозначений, нормируемых для данной конструкции предельных состояний и цифры, соответствующей времени достижения одного из этих состояний (первого по времени) в минутах.

Например, приведенные в нормативных документах обозначения означают:

R 120 - предел огнестойкости должен составлять не менее 120 минут - по потере несущей способности;

RЕ 60 - предел огнестойкости должен составлять не менее 60 минут - по потере несущей способности и потере целостности, независимо от того, какое из двух предельных состояний наступит ранее;

REI 30 - предел огнестойкости должен составлять не менее 30 минут - по потере несущей способности, целостности и теплоизолирующей способности независимо от того, какое из трех предельных состояний наступит ранее.

Если для конструкции нормируются (или устанавливаются) различные пределы огнестойкости по различным предельным состояниям, обозначение предела огнестойкости состоит из двух или трех частей, разделенных между собой наклонной чертой.
Например:

R 120/EI 60 - предел огнестойкости не менее 120 минут - по потере несущей способности/ и предел огнестойкости не менее 60 минут - по потере целостности или теплоизолирующей способности независимо от того, какое из двух последних предельных состояний наступит ранее.

При составлении протокола испытаний и оформлении сертификата пожарной безопасности следует указывать предельное состояние, по которому установлен фактический предел огнестойкости конструкции.

При различных значениях пределов огнестойкости одной и той же конструкции по разным предельным состояниям обозначение пределов огнестойкости перечисляется по убыванию.

Например, R90/I60/E30.

Цифровой показатель в обозначении предела огнестойкости должен соответствовать одному из чисел следующего ряда: 15, 30, 45, 60, 90, 180, 240, 360.
5.7. Фактические и требуемые пределы огнестойкости.
Пределы огнестойкости делятся на:

Фактические (П ф) – пределы огнестойкости реально существующих конструкций;

Требуемые (П тр) – нормативные пределы огнестойкости.

Требуемые пределы огнестойкости П тр определяются в зависимости от требуемой степени огнестойкости зданий.

Фактические пределы огнестойкости СК определяются двумя способами: огневыми испытаниями (REI) и расчетами (RI).
Вопрос: Почему расчетом нельзя предсказать потерю целостности?

5.8. Основные документы, регламентирующие испытания различных СК на огнестойкость
Конструкции строительные. Методы испытаний на огнестойкость. Двери шахт лифтов.


ГОСТ 30247.0-94

Конструкции строительные. Методы испытаний на огнестойкость. Общие требования

ГОСТ 30247.1-94

Конструкции строительные. Методы испытаний на огнестойкость. Несущие и ограждающие конструкции

ГОСТ 30247.3-2002

Конструкции строительные. Методы испытаний на огнестойкость. Двери шахт лифтов

ГОСТ Р 53298-2009

ГОСТ Р «Потолки подвесные. Метод испытания на огнестойкость»

ГОСТ Р 53299-2009

ГОСТ Р «Воздуховоды. Метод испытаний на огнестойкость»

ГОСТ Р 53301-2009

ГОСТ Р «Клапаны противопожарные вентиляционных систем. Метод испытаний на огнестойкость»

ГОСТ Р 53302-2009

ГОСТ Р «Оборудование противодымной защиты зданий и сооружений. Вентиляторы. Метод испытаний на огнестойкость»

ГОСТ Р 53303-2009

ГОСТ Р «Конструкции строительные. Противопожарные двери и ворота. Метод испытаний на дымогазопроницаемость»

ГОСТ Р 53304-2009

ГОСТ Р «Стволы мусоропроводов. Метод испытания на огнестойкость»

ГОСТ Р 53305-2009

ГОСТ Р «Противодымные экраны. Метод испытаний на огнестойкость»

ГОСТ Р 53306-2009

ГОСТ Р «Узлы пересечения ограждающих строительных конструкций трубопроводами из полимерных материалов. Метод испытания на огнестойкость»

ГОСТ Р 53307-2009

ГОСТ Р «Конструкции строительные. Противопожарные двери и ворота. Метод испытаний на огнестойкость» взамен ГОСТ 30247.2-97

ГОСТ Р 53308-2009

ГОСТ Р «Конструкции строительные. Светопрозрачные ограждающие конструкции и заполнения проемов. Метод испытаний на огнестойкость»

ГОСТ Р 53309-2009

ГОСТ Р «Здания и фрагменты зданий. Метод натурных огневых испытаний. Общие требования»

ГОСТ Р 53310-2009

ГОСТ Р «Проходки кабельные, вводы герметичные и проходы шинопроводов. Требования пожарной безопасности. Методы испытаний на огнестойкость»

Глава 6

Методология огневых испытаний строительных конструкций
6.1. Общая методология

По результатам огневых испытаний, начавших интенсивно проводиться в нашей стране, начиная с 1948 г., накоплен обширный банк данных и в настоящее время огневые испытания на огнестойкость проводятся, как правило, для конструкций, которые не испытывались ранее и для которых нет официально утвержденной методики расчета.
Главная идея огневых испытаний – наиболее точное воспроизведение поведения СК при огневом воздействии на нее.

Для этого:

1) испытываемая конструкция выполняется проектных размеров (в натуральную величину). При невозможности испытания образцов проектных размеров их уменьшение допускается до величин указанных в таблице 6.1.

Таблица 6.1

Минимальные размеры испытываемых строительных конструкций


Наименование конструкции

Размеры, м

Ширина

Длина

Высота

Стены и перегородки

3,0

-

3,0

Покрытия и перекрытия, опирающиеся по двум сторонам

2,0

4,0

-

Покрытия и перекрытия, опирающиеся по четырем сторонам

2,8

4,0

-

Колонны, столбы и другие вертикальные стержневые конструкции

-

-

2,5

Балки и другие горизонтальные стержневые элементы

-

4,0

-

2) испытываемая конструкция опирается и нагружается в соответствии с положением и нагружением в реальном здании
Образцы несущих конструкций испытываются на действие нормативной нагрузки. Распределение нагрузки и опирание образцов при их испытаниях должны соответствовать расчетным схемам принятым при проектировании. При невозможности соблюдения этого условия в сечениях образцов должны быть созданы напряжения, соответствующие проектным расчетным схемам. Нагрузка устанавливается не менее, чем за 30 мин. До начала испытания и поддерживается в течение всего времени испытания постоянной.
3) конструкция подвергается огневому воздействию также в соответствии с реальным расположением ее в здании, т.е. схема обогрева конструкций должна соответствовать реальным условиям.

Перекрытия и покрытия воздействие тепла снизу.

Несущие балки и фермы – воздействие тепла с трех сторон

Колонны и столбы – воздействие тепла со всех сторон.

Наружные стены – воздействие тепла только с внутренней стороны.
Образцы многослойных несимметричных по сечению внутренних стен и перегородок - должны подвергаться воздействию тепла с каждой стороны отдельно (кроме случая, когда неблагоприятная сторона может быть заранее установлена).

Рис. 6.1. Стандартная кривая пожара «температура-время»

Температура в печи измеряется термопарами не менее, чем в пяти точках на расстоянии 100 мм от поверхности испытываемого образца, при этом на каждые 1,5 м 2 ограждающей поверхности образца и на каждые 0,5 м длины балки или колонны устанавливается одна термопара.
За температуру в печи принимается среднеарифметическое значение показаний всех термопар в данный момент времени.

Отклонение среднего значения температуры от стандартной не должно превышать

+ 15% в течение первых 10 мин. испытания;

+ 10% при 10
+ 5% после 30 мин.

6.2. Схемы испытательных установок для экспериментального определения пределов огнестойкости строительных конструкций
А) Установка для определения пределов огнестойкости стен (несущих и ненесущих) и перегородок.

Б) Установка для определения пределов огнестойкости колонн.

В) Установка для определения пределов огнестойкости перекрытий и покрытий.

6.3. Контроль достижения предельных состояний строительной конструкции во время эксперимента
А) Потеря целостности

Определение потери целостности осуществляется с помощью ватного тампона и при поддержке внутри печи избыточного давления.

Б) Потеря теплоизолирующей способности

Температура на необогреваемой поверхности ограждающих конструкций измеряется не менее, чем в пяти точках, одна из которых располагается в центре, а остальные – в середине прямых, соединяющих центр и углы проема печи.

Если при испытании ожидается (прогнозируется) появление максимальной температуры в других точках необогреваемой поверхности, то в них также устанавливают термопары (например, металлический мостик)

В) Потеря несущей способности

Деформации несущих конструкций во время испытания определяются прогибомером.

Проведение испытаний.

Предел огнестойкости конструкции определяется как среднее арифметическое результатов испытаний двух образцов.

При этом максимальное и минимальное значение пределов огнестойкости двух испытанных образцов не должны отличаться более, чем на 20% от показателя с большим значением. Если результаты отличаются друг от друга больше, чем на 20%, то нужно проводить дополнительное испытание, а предел огнестойкости определять как среднеарифметическое двух меньших значений.