Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Круговорот химических элементов в природе (на примере одного из элементов: углерода или кислорода). Роль живых существ в круговороте химических элементов

Круговорот химических элементов в природе (на примере одного из элементов: углерода или кислорода). Роль живых существ в круговороте химических элементов

Содержание статьи

ХИМИЧЕСКИЕ ЭЛЕМЕНТЫ В ПРИРОДЕ – КРУГОВОРОТ И МИГРАЦИЯ. Между литосферой , гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам – диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества – углерода, водорода и кислорода, а также таких жизненно важных элементов как азот , сера и фосфор . Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических и/или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе. Рассмотрим несколько наиболее важных примеров циклического перемещения и миграции химических элементов.

Углерод

– основной элемент жизни – содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона НСО 3 – , карбонат иона СО 3 2– и растворенного диоксида углерода СО 2 . Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много «неживого» органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Связующим звеном в природном круговороте углерода является диоксид углерода (рис. 1).

Рис. 1. УПРОЩЕННАЯ СХЕМА глобального цикла углерода. Числа в рамках отражают размеры резервуаров в миллиардах тонн – гигатоннах (Гт). Стрелки показывают потоки, а связанные с ними числа выражены в Гт/год.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако бoльшая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Современный глобальный цикл углерода состоит из двух меньших циклов. Первый из них заключается в связывании диоксида углерода в ходе фотосинтеза и новом образовании его в процессе жизнедеятельности растений и животных, а также при разложении органических остатков. Второй цикл обусловлен взаимодействием диоксида углерода атмосферы и природных вод:

СО 2 + Н 2 О Н 2 СО 3

Н 2 СО 3 НСО 3 – + Н +

НСО 3 – СО 3 2– + Н +

СО 3 2– + Са 2+ = СаСО 3 Ї

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива – угля, нефти и газа – привело к увеличению поступления диоксида углерода в атмосферу. Это не очень сильно влияет на распределение масс углерода между оболочками Земли, но может иметь серьезные последствия из-за усиления парникового эффекта.

Кислород

на Земле содержится, в основном, в литосфере в виде диоксида кремния и силикатов. Кроме того, кислород есть в составе воды, образующей гидросферу. В атмосфере кислород находится в молекулярном виде. Он является продуктом процессов жизнедеятельности растений и в то же время одним из основных условий существования жизни на Земле. Образование свободного кислорода связано со световой энергией Солнца. Исходным сырьем для образования кислорода служит вода. Почти весь свободный кислород на Земле – это результат реакции фотосинтеза органического вещества из воды и диоксида углерода. Некоторое количество кислорода образуется при разложении воды в верхних слоях атмосферы. Кислород входит в состав многих органических соединений. Между живыми организмами и атмосферой происходит постоянный обмен кислородом.

Несмотря на выделение кислорода зелеными растениями, его содержание в атмосфере не увеличивается. Одновременно с фотосинтезом происходит разложение органического вещества, при этом поглощается практически весь выделившийся кислород. Часть кислорода расходуется на окисление неорганических веществ. Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона.

Водород

на Земле находится, преимущественно, в гидросфере в составе воды. Содержание его в литосфере и атмосфере сравнительно невелико. Он входит также в состав органических веществ. Огромные массы водорода, наряду с кислородом, участвуют в круговороте воды – одном из наиболее мощных циклических процессов на планете.

Особенностью водорода является его способность (наряду с гелием) уходить из поля тяготения Земли благодаря своей малой атомной массе. Эти потери компенсируются выделением водорода из мантии. Молекулярный водород поступает в атмосферу Земли в результате вулканической деятельности, его выделяют также некоторые бактерии. После появления на нашей планете живых организмов водород стал связываться в органическом веществе.

Азот,

вследствие исключительной прочности молекулы N 2 , почти полностью сосредоточен в атмосфере. Часть газообразного азота растворена в природных водах, которые содержат и растворенные азотсодержащие органические вещества и неорганические ионы: катион аммония, нитрит-ион и нитрат-ион. Поскольку азот не образует нерастворимых солей, он только в редких случаях накапливается в литосфере. Так, в южноамериканской пустыне Атакама есть скопления нитрата натрия, который, несмотря на высокую растворимость в воде, сохраняется благодаря исключительно сухому климату.

Слово «азот» буквально означает «безжизненный», поскольку он не поддерживает дыхание. Однако этот элемент является обязательной составной частью белков. Поэтому азот в значительном количестве содержится в живых организмах и «мертвом» органическом веществе. Азот непрерывно перемещается между атмосферой, океаном, живыми организмами и почвой.

В атмосфере под действием электрических разрядов азот переходит сначала в монооксид азота, а затем в диоксид азота. Влага воздуха и кислород превращают диоксид азота в азотную кислоту

4NO 2 + 2H 2 O + O 2 = 4HNO 3

Соединения азота легко растворяются в атмосферных осадках и попадают на поверхность Земли.

Большое значение в связывании атмосферного азота имеет жизнедеятельность клубеньковых бактерий, обитающих на корнях бобовых растений. Ферменты этих бактерий превращают молекулярный азот в соединения, которые затем усваиваются растениями. Из растений связанный азот поступает в организмы животных, в основном, в виде аминокислот и белков. После гибели живых организмов органические вещества превращаются в неорганические соединения, снова усваиваемые растениями. Часть азота в почвах превращается в молекулярный азот и переходит в атмосферу. Молекулярный азот образуется также при полном окислении органических веществ.

Соединения азота попадают в атмосферу с выбросами промышленных предприятий и транспорта, а в природные воды – с бытовыми и промышленными отходами.

Слишком большое количество растворимых соединений азота в почве приводит к росту их содержания в продуктах питания и питьевой воде, это может стать причиной серьезных заболеваний. Соединения азота накапливаются в водоемах и вызывают зарастание озер и водохранилищ. Пока подобные явления наблюдаются лишь в отдельных районах, где в окружающую среду попадает много соединений азота. В целом же природа пока справляется с тем количеством связанного азота, которое производится человеком.

Сера

содержится в атмосфере в небольших количествах, в основном, в виде сероводорода и диоксида серы. Довольно много этого элемента (в виде сульфат-ионов) находится в гидросфере. В литосфере сера встречается в виде простого вещества (самородная сера) и в составе многочисленных минералов – сульфидов и сульфатов металлов. Кроме того, соединения серы есть в углях, сланцах, нефти, природном газе. Сера входит в состав многих белков, поэтому она всегда содержится в организмах животных и растений.

Выделяясь из глубин Земли, газообразные соединения серы (преимущественно диоксид серы и сероводород) растворяются в подземных водах. Здесь они образуют малорастворимые сульфиды (главным образом пирит – дисульфид железа FeS 2) и сульфаты (в частности, сульфат кальция CaSO 4). Образуется также самородная сера:

2H 2 S + SO 2 = 3S + 2H 2 O

Газообразные соединения серы попадают в почву, атмосферу и Мировой океан, где их поглощают серные бактерии. Поглощение соединений серы бактериями происходит и в почве.

Малорастворимые сульфиды, содержащиеся в горных породах, в результате жизнедеятельности некоторых бактерий частично окисляются, превращаясь в легко растворимые сульфаты:

FeS + 2O 2 = FeSO 4

Водорастворимые сульфаты выносятся с поверхности суши с речным стоком, поставляя сульфат-ионы в Мировой океан.

В результате активного связывания серы в земной коре, гидросфере и живых организмах, содержание сероводорода и диоксида серы в атмосфере мало и непостоянно. Под действием кислорода и озона эти вещества постепенно превращаются в серную кислоту:

2SO 2 + О 2 2SО 3

SO 2 + О 3 = SО 3 + О 2

SО 3 + H 2 О = H 2 SO 4

H 2 S + 2О 3 = H 2 SO 4 + О 2

Серная кислота возвращается на землю с атмосферными осадками

Хозяйственная деятельность людей приводит к увеличению содержания соединений серы в атмосфере и гидросфере. В результате изменений в методах животноводства и земледелия (выпас, вспашка, мелиорация) увеличились выбросы серосодержащих соединений в виде пыли. Еще больше серы попадает в атмосферу в форме диоксида серы при обжиге сульфидных руд. Это, в свою очередь, вызывает увеличение потока серы, попадающей из атмосферы в океаны и на поверхность суши. Природные воды загрязняются также удобрениями с полей и стоками промышленных предприятий.

Таким образом, человеческая деятельность существенно изменила круговорот серы между атмосферой, океанами и поверхностью суши. Эти изменения сильнее, чем воздействие человека на цикл углерода. Как и в случае глобального цикла углерода, техногенные выбросы серы в окружающую среду мало влияют на распределение масс этого элемента на поверхности Земли. Однако повышенное содержание серы в промышленных и бытовых отходах создают опасность для жизни на обширных территориях. Массированный выброс диоксида серы в атмосферу порождает кислотные дожди, которые могут выпадать далеко за пределами индустриальных районов. Загрязнение природных вод растворимыми соединениями серы несет угрозу живым организмам внутренних водоемов и прибрежных областей морей.

Фосфор

содержится в земной коре и живых организмах в небольших количествах; тем не менее, он имеет очень большое значение для растений и животных. Без этого элемента невозможен синтез белков. Кроме того, фосфор входит в состав костей и зубов. Именно недостаточное количество фосфора чаще всего ограничивает рост массы живого вещества. Значительная часть фосфора содержится в почвах. Фосфор образует многочисленные минералы (например, фосфориты), однако они не часто встречаются в горных породах в больших количествах. В атмосфере фосфор практически отсутствует.

В природных водах фосфор присутствует в составе органических соединений и взвешенных твердых частиц. Лишь небольшая его часть находится в растворе в виде ортофосфат-иона РО 4 3– и гидроортофосфат-иона НРО 4 2– .

В океане «органический» фосфор многократно переходит от одного живого организма к другому и медленно накапливается в донных отложениях в виде малорастворимых фосфатов. Эти потери фосфора компенсируются только из одного источника – выветривающихся горных пород суши, куда они попадают со дна океанов в результате длительных геологических процессов.

Деятельность человека нарушила природный круговорот фосфора. Соединения фосфора используются для производства удобрений и моющих средств. Это приводит к загрязнению водоемов соединениями фосфора. В таких условиях фосфор перестает быть элементом, ограничивающим рост массы живых существ, особенно водорослей и других водных растений.

Натрий

– один из главных элементов, аккумулированных в земной коре в процессе ее выплавления. Он легко освобождается из структур силикатов при выветривании кристаллических пород. Катион Na + переносится с континентальным стоком в океан. С «солеными ветрами» натрий частично возвращается на сушу. Существенно меньшее количество элемента выносится с поверхности суши в океан с ветровой пылью.

Натрий постоянно присутствует в почвах. Он принимает активное участие в засолении почв, в которых образует соли с хлорид- и сульфат-ионами.

В организмах соли натрия играют существенную роль. Хлорид натрия является обязательным компонентом жидких тканей животных и клеточного сока растений, поэтому он в больших количествах поглощается растительными и особенно животными организмами. Из растительных остатков соли натрия легко выщелачиваются. Натрий активно адсорбируется осадками морей, поэтому большая его масса содержится в осадочной оболочке.

Хлор,

в отличие от натрия, содержится в гранитном слое в небольших количествах. Он вовлекается в круговорот не за счет разрушения горных пород, а благодаря процессам дегазации мантии и выносу вулканических газов.

Этот элемент перемещается между оболочками Земли параллельно с натрием. Он аккумулируется в океанской воде в форме хлорид-ионов. Значительные массы хлора, так же как и натрия, многие миллионы лет мигрируют с поверхности суши в Мировой океан. Вторая особенность глобального геохимического цикла хлора, выраженная еще более сильно, чем в цикле натрия – активная миграция в атмосфере в составе аэрозолей и возврат значительных масс этого элемента на сушу. На территориях, где отсутствуют стоки, хлор вместе с натрием накапливается в почве и замкнутых водоемах.

Хлор имеет важное физиологическое значение. Он содержится в живых организмах в виде хлороводородной кислоты, ее солей (преимущественно хлорида натрия). Поэтому значительные массы хлора, наряду с натрием, участвуют в биологическом круговороте.

Кальций

относится к главным элементам земной коры. Содержание этого элемента уменьшается от глубин Земли к гранитному слою литосферы. Кальций в земной коре образует многочисленные минералы. При выветривании силикатов освобождается большое количество этого элемента. Его водорастворимые соединения, главным образом гидрокарбонат, поступают в природные воды и мигрируют с ними в океан. Хотя этот процесс развивается на протяжении более 2 млрд. лет, концентрация элемента в океанической воде всего лишь в 30 раз больше, чем в речных водах. Это обусловлено низкой растворимостью карбоната кальция, а главное – активным поглощением элемента планктонными организмами и выведением его в осадок. Данные процессы способствуют накоплению кальция в составе мощных толщ известняков, доломитов, известковых глин.

Кальций играет важную роль в физиологии организмов. В растениях он участвует в углеводном и азотном обмене, животным он необходим для построения костного скелета. Кальций участвует и во многих других биохимических процессах.

Таким образом, для процессов глобального массообмена кальция главное значение имеют биологический круговорот и водная миграция иона в системе суша – океан.

Калий

вместе с другими щелочными и щелочно-земельными химическими элементами аккумулировался в земной коре в процессе ее выплавления. Калий входит в состав наиболее распространенных силикатов. При их разрушении этот элемент, в основном, переходит в глинистые минералы. В то же время он частично высвобождается и вовлекается в водную миграцию. Ионы калия активно абсорбируются дисперсным минеральным веществом, а также поглощаются высшими растениями, поэтому калий более прочно удерживается в пределах суши, чем кальций и натрий. В океан некоторое количество калия выносится в виде ионов, однако большая масса элемента переносится в форме взвесей глинистых частиц. Калий активно мигрирует в системе поверхность океана – атмосфера – поверхность океана в составе аэрозолей.

Этот элемент играет важную роль в жизни растений и животных. Он принимает участие в фотосинтезе, влияет на обмен веществ, частично сохраняется в мертвом органическом веществе.

Широкое использование минеральных удобрений пока не оказывает заметного влияние на круговорот калия, однако миграция его сильно возросла в результате эрозии почв.

Кремний

– второй (после кислорода) по массе элемент земной коры. Он интенсивно накапливался в веществе литосферы в процессах его выплавления. Кремний в виде высокодисперсного кремнезема (SiO 2) повсеместно содержится в природных водах и используется многими морскими организмами для построения скелета. Биологический круговорот кремния в океане обусловлен преимущественно жизнедеятельностью диатомовых и радиоляриевых планктонных водорослей и последующим растворением их скелетов.

Для водной миграции кремния характерно преобладающее движение от суши к океану, которое не компенсируется в обратном направлении. Значительное количество кремния перемещается в виде растворимых соединений, однако в составе обломочного материала его выносится во много раз больше. .

Свинец

накапливается в земной коре не только за счет выплавления его из вещества мантии, но и в результате радиоактивного распада изотопов урана (238 U, 235 U) и тория (232 Th). При выветривании горных пород катионы свинца высвобождаются, большая часть их сорбируется высокодисперсными глинистыми частицами и гидроксидами железа, а меньшая поступает в грунтовые воды. В составе взвесей, а также в виде органических соединений, простых и комплексных ионов свинец выносится с речным стоком и осаждается преимущественно в дельтах и узкой прибрежной полосе шельфа. Небольшое количество свинца, попадающее в океан, выпадает в осадок благодаря биофильтрации морской воды организмами планктона. Таким образом, Мировой океан – глобальный аккумулятор растворимых форм свинца.

На суше свинец поглощается растениями. Во время лесных пожаров значительные массы элемента поступают в атмосферу (в виде дыма). Кроме того, свинец содержится в высокодисперсной минеральной пыли. «Время жизни» свинецсодержащих аэрозолей составляет около 7 суток.

Годовая добыча свинца значительно превышает и вынос растворимых форм, и годовой захват растительностью этого элемента. Техногенное рассеяние свинца, в отличие от рассеяния газообразных веществ, не распространяется на большие пространства, а сосредотачивается, в основном, вдоль автомагистралей, это связано с использованием тетраэтилсвинца в качестве антидетонатора автомобильных бензинов.

Цинк

обычно сопутствует свинцу в земной коре, однако биосферная геохимия этих элементов существенно различается. В отличие от свинца, цинк – один из главных микроэлементов, он входит в состав многих ферментов, участвует в синтезе рибонуклеиновых кислот и хлорофилла. Большая часть цинка в растениях связана с легко разрушающимися тканями и быстро удаляется из растительных остатков (в отличие от свинца, который прочно фиксирован в растительных остатках). Водорастворимые формы цинка составляют очень небольшую часть от общей массы металла, однако они активно вовлекаются в водную миграцию. Цинк активно участвует в массообмене между сушей и атмосферой. С атмосферными осадками на поверхность суши водорорастворимых форм цинка выпадает значительно больше, чем захватывается ветром в атмосферу в виде минеральной пыли.

Из приведенных примеров круговоротов и миграции различных элементов видно, что глобальная система циклической миграции химических элементов обладает высокой способностью к саморегуляции, при этом огромную роль в круговороте химических элементов играет биосфера.

В то же время хозяйственная деятельность человека вызывает деформацию природных циклов массообмена и, следовательно, изменение состава окружающей среды. Эти изменения происходят значительно быстрее, чем совершаются процессы генетической адаптации организмов и видообразования. Зачастую хозяйственные действия настолько непродуманны или несовершенны, что создают острую экологическую опасность. Изучение процессов массообмена, связывающих в единое целое все оболочки Земли, должно помочь в создании системы контроля за эколого-геохимическим состоянием окружающей среды и разработке научно обоснованного прогноза экологических последствий хозяйственных действий и новых технологий.

Елена Савинкина

Важным свойством биосферы является наличие в ней механизмов, обеспечивающих круговорот веществ и связанную с ним неисчерпаемость отдельных химических элементов, а также непрерывность биосферных процессов.

Круговоротами называются повторяющиеся процессы превращения и перемещения веществ в природе, имеющие более или менее выраженный циклический характер.

Круговороты веществ и элементов отражают неразрывную связь геологических и биологических процессовв биосфере. Выделяют два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот происходит в течение сотен тысяч или миллионов лет. Горные породы подвергаются разрушению и выветриванию; продукты выветривания, в том числе растворенные в воде минеральные питательные вещества, сносятся потоками воды в мировой океан. В океане эти вещества образуют морские напластовывания, а также частично возвращаются насушус атмосферными осадками и с живыми организмами. Крупные медленные геотектонические изменения, процессы опускания материков и поднятия морского дна, приводят к возвращению морских отложений на сушу, после чего процесс проходит новый цикл.

Малый круговорот является частью большого круговорота и представляет собой процесснепрерывного создания и деструкции органического вещества в экосистемах в результате взаимосвязанного функционирования живых организмов, т.е. питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела и осуществление жизненных процессов как их самих, так и организмов-консументов. Продукты распада органического вещества попадают в распоряжение почвенной микрофлоры и мезофауны (бактерий, грибов, червей и т.п.) и опять разлагаются до минеральных компонентов, которые вновь становятся доступными для растений.

Круговорот воздуха

Поток солнечной энергии образует глобальные физические, круговороты воздуха и воды на Земле. Движение воздушных масс помимо механических эффектов (ветры, волны, течения) обусловливаетаэрогенную миграцию веществ, в первую очередь газов, паров воды и пылевых частиц, аэрозолей разного состава. Под действием солнечной радиации и грозовых разрядов в атмосфере происходят различные фотохимические и электрохимические реакции – фотолиз воды, образование озона, окислов и кислотных осадков, образование углеводородных смогов и др.

Круговорот воды

Глобальный круговорот воды отражен на рис. 4. Это самый значительный по переносимым массам и по затратам энергии круговорот на Земле. За год в него вовлекается всего 0,04% массы гидросферы, но это соответствует 18,3 млн м 3 воды за секунду и более 40 млрд МВт солнечной энергии.

Рис. 4

Резервуары и круговорот воды на Земле.

Объемы резервуаров (подчеркнуты) – в тыс. км 3 ;

потоки влаги (испарение, перенос в атмосфере, осадки, сток) – в тыс. км 3 /год

Речной сток составляет только 8% глобального гидрологического цикла, Круговорот воды, особенно поверхностный и подземный сток на суше, определяет гидрогенную миграцию веществ, которая помимо переноса состоит из множества процессов растворения, кристаллизации, осаждения, ионного обмена и окислительно-восстановительных реакций.

В круговороте воды заметное участие принимают живые организмы, экосистемы. Растения перехватывают часть осадков и способствуют испарению влаги до того, как она попадет на землю. Почвенная влага всасывается корнями растений, участвует в обмене веществ и затем испаряется из листьев (транспирация). Вместе с испарением с поверхности почвы транспирация составляет суммарное испарение. Уровень перехвата и транспирации различен для разных биомов, но в целом составляет более 40% объема испарения на суше.

Закономерный круговорот химических соединений отдельных элементов и осуществляется в ходе совместной деятельности различных живых организмов. Он включает введение химических элементов в состав живых клеток, химические превращения веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ с последующей их минерализацией. Высвобождающиеся минеральные вещества вновь включаются в биологические циклы. Процессы круговорота происходят в конкретных экосистемах, но в полном виде реализуются только на уровне биосферы в целом.

Круговорот биогенных элементов, обусловленный синтезом и распадом органических веществ в экосистеме, называют биотическим круговоротом веществ. Кроме биогенных элементов в биотический круговорот вовлечены важные для биоты минеральные элементы и множество различных соединений. Поэтому весь циклический процесс химических превращений, обусловленных биотой, особенно когда речь идет о всей биосфере, называют еще биогеохимическим круговоротом .

В каждом круговороте выделяют две части: резервный фонд и подвижный (обменный) фонд. В резервный фонд входят медленно движущиеся вещества, в основном небиологический компонент. Для обменного фонда характерен быстрый обмен между организмами и окружающей средой. Сравнительные объемы подвижных и резервных фондов имеют значение с точки зрения оценки антропогенной нагрузки на биосферу, так как изменению более подвержены малообъемные фонды.

Биогеохимические циклы разделяют на круговороты газов с резервным фондом в атмосфере и гидросфере и осадочные круговороты с резервным фондом в земной коре.

Благодаря наличию крупных атмосферных и океанических фондов в круговоротах газообразных веществ – углерода, азота, кислорода – довольно быстро компенсируются возможные нарушения. Эти круговороты «забуферены» и в этом отношении являются саморегулирующими системами. В осадочных циклах (фосфор, железо и др.) механизмы саморегуляции работают гораздо хуже и легко нарушаются, так как основная масса веществ в осадочных циклах находится в малоподвижном резервном фонде в земной коре.

В качестве примеров круговорота веществ в биосфере рассмотрим биогеохимические циклы важнейших биогенных элементов: углерода, азота, фосфора, серы.

Круговорот углерода

В основе биогенного круговорота углерода лежит неорганическое вещество – диоксид углерода. В природе СО 2 входит в состав атмосферы, а также находится в растворенном виде в гидросфере.

Включение углерода в состав органического вещества происходит в процессе фотосинтеза, в результате которого на основе углекислого газа и воды образуются сахара. В дальнейшем, другие процессы биосинтеза преобразуют их в более сложные органические вещества. Эти соединения формируют ткани фотосинтезирующих организмов и служат источником органических веществ для животных.

В процессе дыхания все организмы окисляют сложные органические вещества в конечном итоге до СО 2 , который выводится во внешнюю среду, где может вновь вовлекаться в процесс фотосинтеза. Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разрушению организмами-редуцентами, в результате чего углерод в виде Н 2 СО 3 вновь поступает в круговорот.

При определенных условиях разложение накапливаемых мертвых остатков в почве идет замедленным темпом через образование гумуса, минерализация которого под воздействием грибов и бактерий происходит с низкой скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность организмов-деструкторов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа, углерод не высвобождается и круговорот приостанавливается. Аналогичным образом в прошлые геологические эпохи происходило образование каменного угля и нефти. Сжигание ископаемого топлива в настоящее время возвращает углерод, выключенный ранее из круговорота, в атмосферу. В гидросфере приостановка круговорота углерода связана с включением СО 2 в состав СаСО 3 в виде известняков. В этом случае углерод выключается из круговорота на целые геологические эпохи до поднятия органогенных пород над уровнем моря. Тогда круговорот возобновляется через выщелачивание извесняков атмосферными осадками, а также биогенным путем под воздействием лишайников, корней растений. Схема круговорота углерода приведена на рис.5.

Рис.5.

Схема круговорота углерода

Круговорот азота

Главный источник азота органических соединений – газообразный азот N 2 в составе атмосферы. Молекулярный азот не усваивается живыми организмами. Переход его в доступные живым организмам соединения (фиксация) может происходить несколькими путями. Фиксация азота частично происходит в атмосфере, где при грозовых разрядах образуется оксид азота (II), который окисляется до оксида азота (IV), с последующим образованием азотной кислоты и нитратов, выпадающих на поверхность Земли с атмосферными осадками.

Наиболее важной формой фиксации азота является ферментативная фиксация в процессе жизнедеятельности сравнительно немногих видов организмов-азотфиксаторов. Отмирая, они обогащают среду органическим азотом, который быстро минерализуется. Наиболее эффективна фиксация азота, осуществляемая бактериями, формирующими симбиотические связи с бобовыми растениями. В результате их деятельности в наземных и подземных органах растений (например, клевера или люцерны) за год накапливается азота до 150-400 кг на 1 га. Азот связывают также свободноживущие азотфиксирующие почвенные бактерии, а в водной среде – сине-зеленые водоросли (цианобактерии). Все азотфиксаторы включают азот в состав аммиака (NH 3), и он сразу же используется для образования органических веществ, в основном для синтеза белков. Минерализация азотсодержащих органических веществ редуцентами происходит в результате процессов аммонификации и нитрификации . Аммонифицирующие бактерии в процессе биохимического разложения мертвого органического вещества переводят азот органических соединений в аммиак, который в водном растворе образует ионы аммония (NH 4 +). В результате деятельности нитрифицирующих бактерий в аэробной среде аммиак окисляется в нитриты (NO 2 -), а затем в нитраты (NO 3 -).

Большинство растений получают азот из почвы в виде нитратов. Поступающие в растительную клетку нитраты восстанавливаются до нитритов, а затем до аммиака, после чего азот включается в состав аминокислот, составляющих белки. Часть азота растениями усваивается непосредственно в виде ионов аммония из почвенного раствора.

Животные получают азот по пищевым цепям прямо или опосредованно от растений. Экскреты и мертвые организмы, составляющие основу детритных пищевых цепей, разлагаются и минерализуются организмами-редуцентами, превращающими органический азот в неорганический.

Возвращение азота в атмосферу происходит в результате деятельности бактерий-денитрофикаторов, осуществляющих в анаэробной среде процесс, обратный нитрификации, восстанавливая нитраты до свободного азота.

Значительная часть азота, попадая в океан (в основном со стоком вод с континентов), используется водными фотосинтезирующими организмами, прежде всего фитопланктоном, а затем, попадая в цепи питания животных, частично возвращаются на сушу с продуктами морского промысла или птицами. Небольшая часть азота попадает в морские осадки. Схема круговорота азота приведена на рис.6.

Рис.6.

Схема круговорота азота

Круговорот фосфора

В круговороте фосфора, в отличие от круговоротов углерода и азота, отсутствует газовая фаза. Фосфор в природе в больших количествах содержится в минералах горных пород и попадает в наземные экосистемы в процессе их разрушения. Выщелачивание фосфора осадками приводит к поступлению его в гидросферу и соответственно в водные экосистемы. Растения поглощают фосфор в виде растворимых фосфатов из водного или почвенного раствора и включают его в состав органических соединений – нуклеиновых кислот, систем переноса энергии (АДФ, АТФ), в состав клеточных мембран. Другие организмы получают фосфор по пищевым цепям. В организмах животных фосфор входит в состав костной ткани, дентина.

В процессе клеточного дыхания происходит окисление органических соединений, содержащих фосфор, при этом органические фосфаты поступают в окружающую среду в составе экскретов. Организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и, таким образом, снова вовлекаться в круговорот.

Поскольку в круговороте фосфора отсутствует газовая фаза, фосфор как и другие биогенные элементы почвы, циркулирует в экосистеме лишь в том случае, если отходы жизнедеятельности откладываются в местах поглощения данного элемента. Нарушение круговорота фосфора может происходить, например, в агроэкосистемах, когда урожай вместе с извлеченными из почвы биогенами перевозится на значительные расстояния, и они не возвращаются в почву в местах потребления.

После неоднократного потребления фосфора организмами на суше и в водной среде, в конечном итоге он выводится в донные осадки в виде нерастворимых фосфатов. После поднятия осадочных пород над уровнем моря в ходе большого круговорота вновь начинают действовать процессы выщелачивания и бигенного разрушения.

Внесение фосфорных удобрений, представляющих собой продукты переработки осадочных пород, позволяет восполнить потребленный фосфор в регионах с интенсивным сельскохозяйственным производством. Однако, смыв удобрений с полей, а также поступление в водоемы фосфатов с продуктами жизнедеятельности животных и человека может приводить к перенасыщению водных экосистем фосфатами и нарушению в них экологического равновесия.

Схема круговорота фосфора приведена на рис.7.

Рис.7.

Схема круговорота фосфора

Круговорот серы

В глобальном круговороте серы (рис. 8) кроме бактерий, грибов и растений, использующих сульфат природных вод и почвы для синтеза серосодержащих аминокислот, работают еще несколько групп специализированных бактерий, осуществляющих превращения в реакцияхH 2 SоS<=>SO 4 иH 2 S<=>SO 4 .

Потребность биоты в сере относительно невелика (биофильность S»1), а природные резервуары серы огромны. Поэтому сера редко оказывается лимитирующим биогеном. Биотический круговорот серы включен в общий, в значительной своей части абиогенный, процесс постепенного превращения восстановленных форм серы (в основном сульфидных руд), сложившихся в восстановительной обстановке древней Земли, в окисленные формы. Эта тенденция существенно усиливается техногенезом.

Со времени образования Земли на планете происходят процессы перехода химических соединений и элементов из одного состояния в другое. Это круговорот веществ в природе. Как он происходит и для чего нужен разберём в этой статье.

Быстрая навигация по статье

Они такие разные

Круговорот веществ на самом деле, по сути, является бесконечно повторяющимися циклами. Причём благодаря взаимодействию химических элементов и разнообразию химических соединений они никогда не повторяются в точности. Рассмотрим разные виды циклов, а также то, как замкнутый круговорот веществ влияет на развитие и существование нашей планеты.

Биогеохимический круговорот веществ

Какова роль энергии в круговороте? Первичный источник энергии для круговорота веществ в большинстве случаев — Солнце. Эта энергия вовлекается из космоса.

Круговорот веществ и энергии

Энергия, вырабатываемая организмами, преобразуется в тепло и утрачивается для экосистемы. В отличие от неё движение веществ происходит с помощью саморегулирующихся процессов с участием всех составляющих различных экосистем. Из более 95 элементов, встречающихся в природе, для жизни живых организмов нужны всего 40. В их числе самые важные и необходимые в огромных количествах четыре основных элемента:

  1. кислород;
  2. водород;
  3. углерод;
  4. азот.

Откуда же они берутся в необходимом размере? Например, азот забирается из атмосферы с помощью действующих азотфиксирующих бактерий, затем возвращается другими бактериями. Кислород, используемый различными организмами для дыхания, приходит в атмосферу благодаря фотосинтезу. Растения усваивают углекислый газ, вовлекая его в круговорот веществ. В важных процессах также участвуют углерод и водород.

В природе ничего не происходит просто так. Посмотрим на вулканы. Во время их извержения в атмосферу поступают различные газы, в том числе и азот. Это круговорот газообразных веществ.

В деятельности эволюции в биосфере с каждым циклом увеличивается число биологических компонентов. В последнее время немаловажную роль в этих процессах играет человек. Своей деятельностью он усиливает сложившийся тысячелетиями круговорот веществ и поток энергии в экосистеме. Это действует разрушающим образом на биосферу, сложившуюся на настоящий момент.

Раньше, когда на Земле только зарождалась жизнь, в атмосфере было больше углерода, кислорода же почти не было. Поэтому первые живые организмы были анаэробными. С течением длительного промежутка времени накапливался кислород, уменьшался процент углерода. Сейчас количество углекислого газа увеличивается. Этому способствует использование горючих ископаемых и уменьшение «лёгких планеты» — джунглей, лесов. Антропогенный круговорот веществ утрачивает свою замкнутость.

Исследуя, в каких поясах Земли наиболее активны круговороты веществ и энергии, учёные пришли к выводу, что более консервативны в этом плане тропические экосистемы. Изучая влияние человека на эти процессы, нужно говорить не о том, что люди своей деятельностью меняют то, что не должно меняться, а о том, что эта деятельность влияет на скорость изменений.

В описании круговорота веществ иногда выделяют восходящую часть и нисходящую. В процессе круговорота веществ содержащаяся в органических веществах энергия, переходя из одного состояние в другое, постепенно теряется. Это нисходящая часть. Когда вещества уже не могут служить источником энергии, они становятся материалом для новых клеток. Это восходящая часть кругооборота.

Большой и маленький

Есть два основных кругооборота. Большой геологический круговорот веществ начался с момента образования планеты. Цикл в нём может длится тысячи лет. Под воздействием внешних факторов разрушаются горные породы, их мельчайшие частицы остаются на суше, некоторая их доля с водой попадает в Мировой океан, где, в свою очередь, образуются новые напластования. Благодаря геотектоническим процессам, движению и изменению рельефа дна эти напластования опять оказываются на суше и всё начинается сначала. Геологический круговорот веществ обусловлен взаимодействием двух энергий: Земли и Солнца. Он возможен только при присутствии всех составляющих.


Геологический круговорот веществ

Малый круговорот веществ в природе — это всегда часть большого. Он называется биогеохимический круговорот веществ и проявляется только в границах биосферы, присутствуя во всех экосистемах. Во время него питательные вещества, углерод и вода накапливаются в растениях, затем расходуются на рост не только самих растений, но и на жизнедеятельность других организмов. Как правило, это животные, которые съедают растения — консументы. Продукты жизнедеятельности и распада этих животных под действием микроорганизмов опять разлагаются на минеральные компоненты и с помощью растений снова вовлекаются в оборот. В таких циклах участвуют все химические элементы, в первую очередь нужные для построения живых клеток.

Самый подвижный

Вода никогда не стоит на месте. Испаряясь с разных поверхностей, она накапливается в атмосфере для того, что бы выпасть на землю в виде осадков. При этом она постоянно меняет свою форму. Поэтому количество воды не меняется — идёт её постоянное обновление. Это кругооборот воды в природе. Он связывает между собой геологический и биотический круговорот веществ.


Круговорот воды в природе

В биосфере вода, меняя своё состояние, проходит малый и большой кругообороты. Испарение с поверхности океана, конденсация в атмосфере и выпадение в виде осадков обратно в океан — это малый оборот. Когда часть водяного пара воздушными потоками переносится с океана на сушу, то эта вода участвует в большом кругообороте. Какая-то её часть испаряется и остаётся в атмосфере, остальная с ручьями, речками и грунтовыми водами попадает обратно в океан. На этом большой цикл завершается и начинается с начала.

Самый активный

В границах биосферы непрерывно происходит мгновенный обмен кислорода из воздуха с живыми организмами, что служит главным источником жизни. Он очень сложный, вступающий в различные комбинации минеральных и органических веществ. В настоящий момент развития биосферы наступил период, когда количество выделяемого кислорода практически равно поглощаемому количеству. Углерод в круговорот веществ включается благодаря, в том числе, и фотосинтезу. Синтез и его составляющие — основа обновления воздуха в биосфере.


Круговорот кислорода в природе

Необходимый азот

Во время загнивания органических веществ часть находящегося в них азота преобразуется в аммониак, перерабатываемый обитающими в почве растениями обратно в азотную кислоту. Она вступает в микрореакцию с заключающимися в земле организмами и преобразуется в нитраты. Это — доступная для растений форма. Так образуется малый кругооборот азота.


Круговорот азота

Однако некоторое количество азота при гниении выделяется в атмосферу и образует свободный азот. Кроме этого такая форма появляется вследствие горения органических веществ, сжигания угля, дров.

Не дают нарушиться природному балансу азотобактерии. Некоторые из них живут на корнях растений семейства бобовых, образуя небольшие клубни. Выделяя из воздуха атмосферный азот, они преобразуют его в азотные соединения, которые переходят в растения. Позже растения трансформируют их в белки, жиры, углеводы и другие вещества. Так происходит кругооборот азота.

Используя растения, не давая им пройти стадию гниения, люди создают дефицит азота. Чтобы избежать этого человек научился вносить в почву азотные удобрения, тем самым возмещая природе утраченный баланс.

Незаменимая сера

Её значение в круговороте неоценимо. Сера служит источником энергии для серобактерий, без которых невозможна очистка вод. В природе эти бактерии широко распространены. Это важный компонент строительства многих видов белков. Круговорот веществ в земной коре также не обходится без серы. Вкладом серы в большой круговорот веществ являются питающиеся ею микроорганизмы, преобразующие аминокислоты. Основными антропогенными поставщиками серы в большой круговорот веществ выступают разлагающиеся растения и животные организмы. Они выделяют серный газ. Тем самым совершается кругооборот серы.


Кругооборот серы

Биосфера

Все представители живой природы, в том числе и человек, образуют биомассу. Она постоянно меняется, участвуя в процессах, происходящих в окружающей среде.

Растения называют продуцентами, животных — консументами. Простейшие и другие микроорганизмы, разлагающие органику в неорганику, называются редуценты. Их ещё называют разрушителями.

Процесс разлагания — это деструкция органического вещества.

Разберём, какую роль играют в круговороте веществ представители разных групп и какова роль продуцентов:

  • сине-зелёные бактерии и растения преобразуют солнечный свет в энергию химических связей. Таким образом происходит рождение органического вещества из неорганических элементов;
  • всеядные существа, способные питаться растениями. К ним относится и человек. Они потребляют растения (органику), перерабатывая внутри себя, на выходе давая неорганику;
  • плотоядные животные поедают растительноядных, органика также попадает в них, но не растениями, а в другой форме;
  • высшие хищники, способные питаться плотоядными животными. Это последнее перемещение органики внутри живых организмов;
  • простейшие, грибки и микроорганизмы, разлагающие останки живых существ. В ходе этого процесса они перерабатывают органику в неорганический вид — соли, воду, минералы и углекислый газ;
  • все эти элементы снова используются растениями.

В круговороте веществ наибольшую роль играют микроорганизмы, разрушителей считают начальным звеном явления.

Как видно из этой схемы, консументы в процессе круговорота веществ в биосфере используют пищевые связи, важный компонент цепочки. Однако всё начинается с растений и заканчивается ими же.


Разнообразие растений в природе

Помимо замкнутого существует и и незамкнутый круговорот веществ.

Экосистемы

Кратко, экосистемы — это природные комплексы, образованные средой обитания и совокупностью организмов (биоценозов), живущих в ней. Они являются компонентом, обеспечивающим круговорот веществ в биосфере . Их изучением занимается наука, получившая название экология.

В этой сфере работают люди разных профессий. В настоящее время глобальный круговорот веществ нарушается действиями человека, за счёт разрушающей деятельности антропогенного воздействия.

Экосистемы в процессе своего развития проходят множество биохимических циклов. Причём, если цикл не замкнутый, то одна экосистема со временем может преобразоваться в другую. На эту ситуацию влияет кругооборот веществ в биоценозе.

Рассмотрим, как основан круговорот веществ и превращение энергии в экосистемах различного вида.

Луг

Различная растительность: трава, цветы, растения небольшого размера являются продуцентами. Летающие и ползающие насекомые питаются травой, пыльцой. Этими насекомыми питаются птицы. После их смерти останками занимаются редуценты, и продукты деятельности последних становятся составляющими элементами новых продуцентов, растений. Получается, консументы в экосистеме луга участвуют в круговороте веществ и превращениях органики в неорганическое вещество.

Озеро

Каждое озеро имеет свою экосистему. Продуцентом тут выступает планктон и ряска, которые помимо функции переработки органики наполняют воду кислородом. Консументов или потребителей очень много. Это рыбы, питающиеся растениями, ракообразные, головастики и личинки. За ними идут хищные рыбы и водоплавающие птицы. Рано или поздно часть из них оказываются на дне в виде останков и тут за них берутся мелкие беспозвоночные и бактерии, редуценты. Так как консументов в озерах значительно больше редуцентов, они не могут переработать все останки, оказывающиеся на дне. Получается незамкнутый круговорот веществ и поток энергии в экосистеме. Если кругооборот замкнут не полностью, то условия в экосистеме постепенно меняются. Именно поэтому небольшие озёра со временем превращаются в болота.


Круговорот веществ в экосистеме озера

Круговорот веществ в аквариуме характерен такой же схемой.

Болото

Когда озеро начинает зарастать, у берегов появляется мох — сфагнум. С его появлением начинается круговорот веществ в болоте. Так как сфагнум плавает на поверхности, под ним образуется очень холодный слой воды без кислорода, в котором не могут существовать микроорганизмы. Веточки мха, отмирая, опускаются на дно, образуя торф. Толщина торфяной подушки достигает 5 метров – именно на ней живут обитатели болот. Так как круговорот веществ в болоте также не является замкнутым, через много-много лет болото превращается в лес, чем и объясняется постоянное образование, а затем зарастание болотин. Но пока этого не произошло, болото поддерживает уровень грунтовых вод и является необходимым компонентом в кругообороте веществ в биосфере.

Техногенный круговорот веществ

Отличие техногенного круговорота от биотического в том, что он всегда незамкнутый. Это, скорее, ресурсный цикл. На уровне жизни различных организмов в пределах биосферы это сказывается не лучшим образом. Например, скорость уменьшения объёма воды в таком цикле намного больше, чем в биотическом. То же можно сказать и о других расходуемых в процессе элементах. Эти данные зависят от уровня организации.

Заключение

Солнце — источник энергии, обеспечивающий круговорот веществ. Оно снабжает планету возобновляемой энергией, которая, в свою очередь, постоянно преобразуется. Есть множество циклов, которые изучаются учёными впервые. Даже зная принципы циклов кругооборотов, специалисты приходят к всё новым выводам и открытиям. Складывается впечатление что человек, не знает и десятой доли тех тайн природы, которые скрыты от его взгляда. От того, насколько быстро мы сможем эти тайны разгадать, зависит качество жизни будущих поколений. Главный вывод один: круговорот веществ и превращение энергии в экосистеме является залогом жизни на планете. Жизнь на Земле невозможна без круговорота.


Без круговорота, жизнь на земле невозможна

Из статьи видно, какую роль выполняют круговороты веществ и энергии в географической оболочке и в биосфере. Поэтому, думаем, понятно, что организации живой природы нуждаются в защите человека.

Круговороты химических элементов

Химические элементы путешествуют, как и люди. Однако средств передвижения у химических элементов больше, потому что они используют транспорт, созданный и природой, и человеком. В природе химические элементы передвигаются в земной коре вместе с магматическими расплавами, по земле - в виде обломков горных пород, с глубинными и поверхностными водами, с живыми организмами.

Химическим элементам помогают путешествовать люди, отправляя их с продуктами питания (зерном, фруктами, овощами), с сырьем для промышленности (железной рудой, древесиной, углем) по железным дорогам, на самолетах и морских судах.

На пути химических элементов могут возникнуть препятствия - геохимические барьеры, заставляющие их накапливаться в земной коре, почвах, илах и живых организмах. Химические элементы всегда путешествуют вместе.

Круговорот азота в природе

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве и трифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве карбонатами, например, с карбонатом кальция СаСОз, образует нитраты

2НNОз + СаСОз = Са(NОз) 2 + СО 2 +Н 2 О

Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа. Кроме того, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходят в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву, часть его постепенно выделяется в свободном виде.

Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - «клубеньков», почему они и получили название клубеньковых бактерий. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества.

Таким образом, в природе совершается непрерывный круговорот азота. Однако ежегодно с урожаем с полей убираются наиболее богатые белками части растений, например, зерно. Поэтому в почву необходимо вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений.

На поверхности земного шара постоянно происходят процессы окисления (дыхание растительных и животных организмов, гниение), в результате чего свободный кислород связывается с другими элементами, входящими в состав органических веществ, и образует разнообразные соединения, например углекислый газ CO 2 , воду Н 2 О.

Круговорот кислорода в природе

Но количество свободного кислорода в атмосфере остаётся неизменным. Это происходит потому, что природу протекают процессы, обратные окислению, в результате которых образуется свободный кислород. Действительно, как показал русский ученый К.А. Тимирязев, в зеленых листьях растений под действием солнечных лучей и хлорофилла из воды и углекислого газа СО 2 образуются органические вещества и кислород О 2 , выделяющийся в атмосферу.

Освобожденный кислород снова затрачивается при окислении органических веществ. Образующиеся при этом окислении вода и углекислый газ вновь превращаются в зеленых листьях на солнечном свету в органические вещества и свободный кислород и т. д. Так осуществляется круговорот кислорода в природе, т. е. попеременное вхождение его в соединения и выделение из них.

Круговорот фосфора

Растения могут произрастать, если в почве содержатся фосфаты. Но этих солей даже в наиболее плодородных почвах содержится мало. Там, где человек не вмешивается в жизнь природы, извлеченный растениями из почвы фосфор вновь возвращается в почву при гниении остатков растений и животных. Так осуществляется круговорот фосфора в природе.

Круговорот углерода

Подробно другим элементам, атомы углерода в природе не находятся постоянно в одних и тех же соединениях, а переходят из одних веществ в другие.

До 17 млрд. т углерода двуокиси углерода ежегодно переходит из атмосферы в состав органических веществ растений. Много углерода, перешедшего в состав растений, усваивается организмами животных и человека с растительной пищей. Часть ассимилированного растениями углерода отлагается в земле в виде торфа, угля и сланцев.

Кроме поглощения двуокиси углерода растениями, много ее связывается также в результате взаимодействия с карбонатами земной коры, которые при этом переходят в бикарбонаты.

Наряду с процессами связывания двуокиси углерода идут процессы выделения ее в атмосферу. В огромном количестве двуокись углерода образуется при дыхании животных, человека и растений. Выделение двуокиси углерода в атмосферу происходит также при сжигании различных видов топлива. Наконец, атмосфера пополняется двуокисью углерода благодаря деятельности вулканов, выделению газов из трещин земли и водных источников. Так происходит в природе непрерывный круговорот углерода.

Между литосферой, гидросферой, атмосферой и живыми организмами Земли постоянно происходит обмен химическими элементами. Этот процесс имеет циклический характер: переместившись из одной сферы в другую, элементы вновь возвращаются в первоначальное состояние. Круговорот элементов имел место в течение всей истории Земли, насчитывающей 4,5 млрд. лет.

Гигантские массы химических веществ переносятся водами Мирового океана. В первую очередь это относится к растворенным газам - диоксиду углерода, кислороду, азоту. Холодная вода высоких широт растворяет газы атмосферы. Поступая с океаническими течениями в тропический пояс, она их выделяет, так как растворимость газов при нагревании уменьшается. Поглощение и выделение газов происходит также при смене теплых и холодных сезонов года.

Огромное влияние на природные циклы некоторых элементов оказало появление жизни на планете. Это, в первую очередь, относится к круговороту главных элементов органического вещества - углерода, водорода и кислорода, а также таких жизненно важных элементов как азот, сера и фосфор. Живые организмы оказывают влияние и на круговорот многих металлических элементов. Несмотря на то, что суммарная масса живых организмов Земли меньше массы земной коры в миллионы раз, растения и животные играют важнейшую роль в перемещении химических элементов.

Деятельность человека также оказывает влияние на круговорот элементов. Особенно заметным оно стало в последнее столетие. При рассмотрении химических аспектов глобальных изменений в круговоротах химических элементов следует учитывать не только изменения в природных круговоротах за счет добавления или удаления присутствующих в них химических веществ в результате обычных циклических или вызванных человеком воздействий, но и поступление в окружающую среду химических веществ, ранее не существовавших в природе. Рассмотрим один из наиболее важных примеров циклического перемещения и миграции химических элементов.

Углерод - основной элемент жизни - содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона - , карбонат иона и растворенного диоксида углерода . Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много "неживого" органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор). Часть углерода входит в состав нефти, каменного угля и природного газа.

Связующим звеном в природном круговороте углерода является диоксид углерода (рис. 1).



Упрощенная схема глобального цикла углерода. Числа в рамках отражают размеры резервуаров в миллиардах тонн - гигатоннах (Гт). Стрелки показывают потоки, а связанные с ними числа выражены в Гт/год.

Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако большая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Современный глобальный цикл углерода состоит из двух меньших циклов. Первый из них заключается в связывании диоксида углерода в ходе фотосинтеза и новом образовании его в процессе жизнедеятельности растений и животных, а также при разложении органических остатков. Второй цикл обусловлен взаимодействием диоксида углерода атмосферы и природных вод:

В последнее столетие в углеродный цикл существенные изменения внесла хозяйственная деятельность человека. Сжигание ископаемого топлива - угля, нефти и газа - привело к увеличению поступления диоксида углерода в атмосферу. Это не очень сильно влияет на распределение масс углерода между оболочками Земли, но может иметь серьезные последствия из-за усиления парникового эффекта.