Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Радиоуглеродный метод и его применение в современной науке. Радиоуглеродный анализ это полное надувательство придуманное для фальсификации истории

Радиоуглеродный метод и его применение в современной науке. Радиоуглеродный анализ это полное надувательство придуманное для фальсификации истории

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно.

Радиоуглеродный метод датировки в археологи
Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур.

Радиоуглеродный метод:

  1. - Образование радиоуглерода 14С
  2. - Распад 14С
  3. - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне

радиоуглеродный метод датировки

В настоящее время наиболее известным и часто применяемым является радиоуглеродный метод, который работает с радиоактивным изотопом углерода С14. Этот метод разработал в 1947 г. американский физикохимик, лауреат Нобелевской премии У.Ф. Либби. Суть метода заключается в том, что радиоактивный изотоп углерода С14 образуется в атмосфере под действием космического излучения. Вместе с обычным углеродом С12 он находится в органической ткани всего живого. Когда организм умирает, обмен его углерода с атмосферой прекращается, количество С14 уменьшается при разложении и не восстанавливается. Определение соотношения С14/С12 в образцах при известной и постоянной скорости разложения С14 (5568±30 лет) и даёт возможность установить возраст объекта, или, точнее, срок, который прошёл после его смерти.

лаборатории радиоуглеродного анализа

Казалось бы, всё ясно и просто, однако при таком способе датировки образцов многие даты оказываются ошибочными вследствие загрязнённости объектов или ненадёжности их связи с другими археологическими находками. Поэтому многолетняя практика применения радиоуглеродных измерений заставила сомневаться в их точности. Американский археолог У. Брей и английский историк Д. Трамп пишут: «Во-первых, полученные даты никогда не являются точными, только в двух случаях из трех правильная дата укладывается в этом интервале; во-вторых, скорость распада С14 основывается на периоде полураспада 5568±30 лет, и сейчас становится ясно, что это значение скорости полураспада слишком мало. Значение решено не менять, пока не будет принята новая международная норма; и, в третьих, тезис о неизменности скорости полураспада С14 тоже встречает возражения». Сравнивая результаты этого метода (по одним и тем же образцам) с результатами дендрохронологического анализа (то есть по кольцам среза деревьев), уже упомянутые исследователи делают вывод, что к датировке радиоуглеродным методом можно относиться с доверием только для последних 2000 лет.

туринская плащаница фото, самый знаменитый объект для исследований методом радиоуглеродного анализа

Российский ученый Ф. Завельский говорит, радиоуглеродный метод датировки зависит от справедливости принятых apriori в науке допущений:

  • - допущение интенсивность космического из-лучения, падающего на Землю десятки тысяч лет, не менялась;
  • - радиоуглерод, земной атмосферы облучался нейтронами, «разбавлялся» стабильным углеродом всегда одинаково;
  • - удельная активность углерода в атмосфере не зависит от долготы и широты местности и её высоты над уровнем моря;
  • - содержание радиоуглерода в живых организмах было таким же, как и в атмосфере на протяжении обозримой истории. Если одно из принятых допущений окажется неверным, (а если сразу несколько) то результаты радиоуглеродного метода вообще могут стать иллюзорными.
  • Исследователь А. Скляров о применении радиоуглеродного анализа пишет так: «Ненавязчивое желание» лабораторий радиоуглеродных исследований заранее получить от историков и археологов «ориентировочный возраст образца» порождено тщательно скрываемой погрешностью самого метода и носит характер «от лукавого» .
  • Таким образом, для хотя бы ориентировочной датировки археологам приходится параллельно применять другие методы, прибегая к простому сравнению результатов, исходя из того, какая датировка лучше подходит для той или иной находки или всего археологического комплекса. Понятно, что точность датировок в этом случае оставляет желать лучшего.

Туринская плащаница: позитив и негатив

Исследование фрагментов Туринской плащаницы - один из наиболее известных случаев применения радиоуглеродного метода датировки объекта исследований.
Радиоуглеродный анализ датировал плащаницу периодом XI - XIII вв. Скептики считают такой результат подтверждением того, что плащаница - средневековая подделка. Сторонники же подлинности реликвии считают полученные данные результатом загрязнения плащаницы углеродом при пожаре в XVI в.

Понятно, чтобы объявить тот или иной артефакт достоянием какой-то працивилизации, необходимо установить его возраст, определив точную дату создания предмета. Однако современные археологи и историки способны это сделать лишь в очень редких случаях. Подавляющее большинство археологических находок датируются приблизительно. Радиоуглеродный метод датировки в археологи Для датировки найденных предметов применяются несколько методов, но, к сожалению, каждый из них не свободен от недостатков, особенно применительно к поискам следов прадревних культур. Радиоуглеродный метод: - Образование радиоуглерода 14С - Распад 14С - Условие равновесия для живых организмов и неравновесие для умерших организмов, в которых радиоуглерод распадается без пополнения извне радиоуглеродный…

Обзор

В последнее время на Городе развернулось множество споров, касающихся таких тем, как альтернативная история, хронология, креационизм и теория эволюции. В ходе споров постоянно всплывает тема "достоверны ли научные/общепринятые доказательства возраста того или иного артефакта, явления, события и т.п".

Поэтому предлагаю вниманию описание радиоуглеродного метода датирования, как одного из самых распространённых для определения возраста артефактов.

Радиоуглеродный метод датирования - это радиометрический метод, использующий естественное содержание изотопа углерода-14 (14 С) для определения возраста углеродсодержащих материалов. Диапазон применения - до 50 000 лет.

Необработанные данные о возрасте, т.е. данные, не подвергшиеся калибровке, обычно называют радиоуглеродными годами "до настоящего времени". В качестве нулевого отсчёта, т.е. "настоящего времени", принято считать 1950 год н.э.

Радиоуглеродный метод датирования был изобретён Виллардом Либби (Willard Libby), профессором Чикогского университета и его коллегами в 1949 году. В 1960 году он получил Нобелевскую премию по химии за своё изобретение.

Суть метода заключается в том, что стабильный изотоп азота (14 N) в атмосфере подвергается действию космических лучей, превращающих его в изотоп углерода 14 C, который имеет период полураспада 5730±40 лет. Живые организмы в процессе жизнедеятельности усваивают атмосферный углерод, накапливая в свох тканях некоторое количество 14 C, который, затем, постепенно распадается (предполагается, что после гибели организма новых поступлений 14 C в ткани нет). Исследователю достаточно знать, сколько в среднем 14 C данный вид организмов накапливает за свою жизнь, и определить, сколько его осталось в тканях - на основании этих данных расчитывается возраст в радиоуглеродных годах.

Одной из первых демонстраций работоспособности и точности метода было измерение возраста древесины из захоронения древнеегипетского фараона, чей возраст был заранее известен из исторических документов.

Физика процесса

Углерод имеет 2 стабильных изотопа - 12 C (98,89%) и 13 С (1,11%). Кроме того, на Земле имеются следовые количества нестабильного изотопа 14 С (0,0000000001%). Данный изотоп имеет период полураспада около 5730 лет, и, таким образом, должен был давно исчезнуть с лица Земли. Однако постоянные потоки космических лучей, бомбардирующих атмосферу Земли, обновляют этот запас. Нейтроны, возникающие при бомбардировке космическими лучами атмосферы, вступают в ядерную реакцию с ядрами атомов азота:

n + 14 7 N → 14 6 C + p

Наибольшее количество 14 С наблюдается в атмосфере на высотах 9 — 15 км и в высоких широтах, откуда он распространяется по всей атмосфере и растворяется в океанах. Для приблизительного анализа считается, что "наработка" 14 С происходит примерно с постоянной скоростью, и содержание 14 С в атмосфере примерно постоянна (600 млрд. атомов 14 С на моль).

Полученный углерод быстро окисляется до 14 СО 2 и в дальнейшем усваивается растениями и микроорганизмами, поступая в дальнейшем в пищевую цепь других организмов. Таким образом, каждый живой организм постоянно получает определённое количество 14 С в течение всей жизни. Как только он погибает, такой обмен прекращается, и накопленный 14 С постепенно распадается в реакции бета-распада:

14 6 C → 14 7 N + e - +v e

Испуская электрон и антинейтрино, 14 С превращается в стабильный азот.

В 1958 году Хессел де Врайс (Hessel de Vries) доказал, что концентрация 14 С в атмосфере может сильно изменяться как в разное время, так и в разных местах. Для более точных измерений эти изменения учитываются в виде калибровочных кривых. На приведённом рисунке приводится динамика изменения концентрации 14 СО2 в атмосфере над Австралией и Новой Зеландией — значительный всплеск обусловлен многочисленными применениями ядерного оружия в атмосфере.

Кроме того, известно, что морские организмы могут получать углерод из растворённых в воде карбонатов, возраст которых может быть весьма значительным — в силу этого в них может наблюдаться "дефицит" изотопа 14 С, что делает радиоуглеродный метод гораздо менее надёжным для данного вида материалов.

Вычисление возраста

Распад 14 С подчиняется экпоненциальному закону. Другими словами, количество атомов, подвергающихся распаду за определённый период, зависит от исходного количества атомов в начале этого периода. Количество оставшихся атомов С после того, как пройдёт время t , будет выражаться формулой:

С = С 0 е -t / T

где С 0 - исходное количество атомов, T — среднее время распада = t 1/2 (время полураспада) * ln2 , e — основание натурального логарифма.

Таким образом, радиоуглеродный возраст t РВ (без поправки на флуктуации количества 14 С) будет выражаться формулой:

t РВ = -t 1/2 * log 2 (C / C 0 )

Измерения и шкалы

Традиционные методы подсчёта оставшегося в образцах материала 14 С основаны на подсчёте количества всё ещё распадающихся атомов (методы газовой и жидкостной сцинтилляции, основанные на прямом подсчёте "вспышек", порождаемых распадами отдельных атомов 14 C в специальных сцинтилляционных камерах, оборудованных датчиками), но они малочувствительны и могут приводить к большим погрешностям при исследовании малых образцов (менее 1 грамма углерода). Так, например, в образце возраста 10 000 лет среднее число распадов будет 4 атома/секунду в одном моле углерода (примерно 30-40 грамм для древесины), что либо слишком мало для получения надёжной статистики, либо требует слишком большого времени (что также может привести к накоплению ошибки за счёт посторонних сцинтилляций) .

Когда различные авторы апеллируют к весьма ненадёжной и недостоверной информации, получаемой радиоуглеродным методом, прежде всего имеются ввиду традиционные методы подсчёта сцинтилляций.

Изотопная масс-спектрометрия
в последние годы стала основным инструментом для проведения радиоуглеродного датирования. Данный метод основывается на том, что атомы разных изотопов (и веществ, сосоящих из них) имеют разную массу. Образцы вещества окисляются до образования углекислого газа (остальные оксиды удаляются), затем полученный газ ионизируется и на высокой скорости проходит через магнитную камеру, где заряженные молекулы отклоняются от исходной траектории. Чем больше отклонение - тем легче молекула, и тем меньше в ней 14 С. Подсчитав соотношение слабо отклонившихся и сильно отклонившихся молекул, можно определить, какова концентрация 14 С в образце с высокой точностью. Этот метод позволяет датировать образцы с массой всего несколько миллиграммов в диапазоне до 60 000 лет (данные 2005 года).

В настоящее время большинство лабораторий даёт статистическую погрешность ±30 лет в диапазоне возрастов до 3000 лет, на более длинные периоды эта погрешность возрастает (до 500 лет для возрастов порядка 50 000 лет). Обратите внимание, что речь идёт о радиоуглеродном возрасте, а не об абсолютном возрасте образца!

Калибровка

Как было неоднократно сказано, данный метод существенным образом зависит от предположения, что содержание 14 С в атмосфере примерно постоянно. Однако на практике это не так. Уровень 14 С зависит от многих факторов. В первую очередь, от интенсивности космического излучения, которая изменяется в зависимости от изменений магнитного поля Земли, на которое, в свою очередь, действуют вспышки на Солнце. Кроме того, баланс 14 C может нарушаться вследствие крупных выбросов в атмосферу углерода из океана (газовый конденсат), вулканической и иной деятельности. Изменения климата и деятельность человечества также могут нарушать данный баланс.

Основными способами калибровки метода, то есть расчёта баланса 14 С в требуемый период, являются сравнения результатов радиоуглеродного метода с другими независимыми методами — дендрохронологией, исследованиями кернов древнего льда, донных отложений, образцов древних кораллов, пещерных отложений и натёков.


На графике калибровки представлена зависимость радиоуглеродного возраста образцов от их возраста, расчитанного по совокупности других методик. Современная (по данным 2004 года) точность калибровки составляет ±16 лет для возрастов до 6 000 лет и не более ±160 лет для возрастов до 26 000 лет.

Таким образом, современный радиоуглеродный метод датирования является достаточно точным для приблизительной оценки возраста образцов, особенно в исторический период развития цивилизации (4000 лет до н.э.) Однако многочисленные ошибки отсутствия или неверной калибровки , устаревшие методы подсчёта количества изотопа 14 С, и, как следствие, имевшие место "подгонки под ответ" дали богатую почву для сомнений в правомерности датирования этим методом .

Однако сейчас (опять же, с известной оговоркой) этот метод можно признать надёжным , тем более, что в мире имеется около 130 независимых лабораторий, выполняющих данное исследование, и постоянно ведутся работы по улучшению калибровки.

Литература

  1. Arnold, J. R. and Libby, W. F. (1949) Age Determinations by Radiocarbon Content: Checks with Samples of Known Age , Science 110, 678-680.
  2. Libby, W.F. Radiocarbon dating , 2nd Edition, Chicago, University of Chicago Press, 1955.
  3. C. Crowe, Carbon-14 activity during the past 5000 years , Nature , 182, (1958): 470 + опровержения в том же номере: а) K. O. Münnich, H. G. Östlund, and H. de Vries, Nature , 182, (1958): 1432 и б) H. Barker, Nature , 182, (1958): 1433 - в обеих даются доказательства широких изменений уровня 14 С и, соответственно, приводятся расчёты, дающие гораздо меньшие возраста для образцов, представленных C. Crowe.
  4. de Vries, H. L. (1958). Variation in Concentration of Radiocarbon with Time and Location on Earth, Proceedings Koninlijke Nederlandse Akademie Wetenschappen B, 61: 94-102; and in Researches in Geochemistry, P. H. Abelson (Ed.) (1959) Wiley, New York, p. 180
  5. Aitken, M. J. Physics and Archaeology , New York, Interscience Publishers, 1961.
  6. Libby, W.F. Radiocarbon; an Atomic Clock , Annual Science and Humanity journal, 1962.
  7. Kovar, A. J. (1966)

Изменение атмосферной концентрации изотопа 14 C, вызванное ядерными испытаниями. Синяя линия обозначает естественную концентрацию

Радиоуглеродный метод абсолютной геохронологии применяется для датирования новейших отложений (до 60-80 тыс. лет) с высоким содержанием органического материала, биологических останков, предметов и материалов биологического происхождения путём измерения соотношения содержания в материале радиоактивного изотопа углерода 14 С. Предложен Уиллардом Либби в 1946 году, получившим позднее за этот метод Нобелевскую премию по химии в 1960 году.

Радиоактивный 14 C испытывает бета-распад с периодом полураспада 5730±40 лет. Зная исходное соотношение содержания изотопов в организме и измерив их текущее соотношение в образце, можно определить, сколько углерода-14 распалось и, таким образом, установить время, прошедшее с момента гибели организма.

Концентрация радиоуглерода (Δ 14 С - отклонение от уровня международного стандарта радиоуглерода) в образцах долгоживущих деревьев известного возраста, измеренная с высокой точностью в блоках древесины по 10-летиям за 4500 лет.

Изначально предполагалось, что соотношение изотопов углерода в атмосфере во времени и пространстве не меняется, а содержание изотопов в живых организмах в точности соответствует текущему состоянию атмосферы. На самом деле, содержание изотопа 14 C зависит от радиационной обстановки, которая меняется во времени из-за колебания уровня солнечной радиации, и в пространстве, вследствие неодинакового распространения радиоактивных веществ на поверхности Земли и событий, связанных с радиоактивными отходами и испытаниями ядерного оружия (например, в настоящее время в образование изотопа 14 C до сих пор вносят свой вклад радиоактивные материалы, которые образовались и были рассеяны при испытаниях ядерного оружия в атмосфере в середине XX века). Соотношение 14 C/ 12 C зависит и от общей концентрации СO 2 в атмосфере, которая также не является постоянной. Все эти естественные колебания, однако, не очень велики по амплитуде и с определенной степенью точности могут быть учтены. Таким образом, полученный в результате радиоуглеродный возраст до процедуры калибровки не является абсолютным. Детальными исследованиями получена калибровочная кривая , позволяющая переводить радиоуглеродные годы в абсолютные .

На сегодняшний день на историческом интервале (от десятков лет до 60-70 тысяч лет) радиоуглеродный метод можно считать достаточно надёжным и качественно откалиброванным независимым методом датирования предметов органического происхождения. Единственной его проблемой является загрязнение образцов посторонним углеродом.

Технология датирования

Радиоуглеродным методом датируются почвы, торфы, угли, раковины моллюсков, кости и другие объекты органического происхождения.

Количество изотопа 14 C может быть получено непосредственно из образца при помощи масс-спектроскопии, выявляющий все атомы массой 14, при этом могут использоваться крайне малые навески (до 1 мг). Специальный фильтр позволяет отличить 14 C и 14 N. Этот метод также называется AMC-датировкой. Он требует сложных высокочувствительных приборов, которыми обладает мало лабораторий и институтов.

Традиционный радиоуглеродный метод требует длительной подготовки образцов. В первую очередь, образец должен быть очищен от более молодых (например, корни деревьев) или более древних (обломки карбонатных пород и др.) источников углерода. Также образец промывается кислотным или щелочным раствором для удаления посторонних источников углерода, попавших в образец. Из костей путем разложения в HCl выделяется коллагеновая фракция, датировка по которой считается наиболее точной, т.к. карбонаты кости могут замещаться на более молодые при захоронении.

Наиболее точными являются датировки метода жидкостной сцинтилляции измерения активности 14 С. Для этого метода из образца получают бензол (C 6 H 6). В бензол добавляют специальное вещество – сцинтиллятор, – которое заряжается энергией электронов, высвобождающихся при распаде 14 С. Сцинтиллятор почти сразу испускает накопленную энергию в виде фотонов света. Свет можно улавливать с помощью фотоумножительной трубки. В сцинтилляционном счетчике имеются две такие трубки. Ложный сигнал можно выявить и исключить, как посланный лишь одной трубкой. Для изоляции счетчиков от фонового излучения, их помещают в свинцовый кожух, толщиной несколько сантиметров.

Радиоуглеродный (РУ) метод датирования был изобретён американским химиком Уилардом Либби в 1946 году, в 1960 году Либби стал Нобелевским лауреатом по химии за обоснование этого метода и его применение. РУ-метод заключается в измерении процентного содержания радиоактивного изотопа углерода С14 в органике и расчётах возраста органики на этом основании. Изначально идея Либби опиралась на следующие

гипотезы:

1. С14 образуется в верхних слоях атмосферы под действием космических лучей, затем перемешивается в атмосфере, входя в состав углекислого газа. Предполагалось, что процентное содержание С14 в атмосфере является постоянным и не зависит от времени и места, несмотря на неоднородность самой атмосферы и распад изотопов.
2. Скорость радиоактивного распада является постоянной величиной, измеряемой периодом полураспада в 5568 лет (предполагается, что за это время половина изотопов С14 превращается в С12).
3. Животные и растительные организмы строят свои тела из углекислоты, добываемой из атмосферы, и при этом живые клетки содержат тот же процент изотопа С14, что находится в атмосфере.
4. По смерти организма, его клетки выходят из цикла углеродного обмена, поэтому изотопы углерода С14 по экспоненциальному закону радиоактивного распада превращаются в стабильный изотоп С12. Что и позволяет расчитать время, прошедшее со времени смерти организма. Это время называется «радиоуглеродным возрастом».

У этой теории, по мере накопления материала, стали появляться контрпримеры: недавно умершие организмы внезапно получались очень древними, или напротив - могли содержали столь огромное количество изотопа, что получали отрицательный РУ-возраст. Некоторые заведомо древние предметы имели молодой РУ-возраст (такие артефакты объявлялись поздними подделками). В итоге оказалось, что РУ-возраст далеко не всегда совпадает с истинным возрастом, в том случае, когда истинный возраст можно проверить. Но РУ-метод применяется в основном для датирования органических предметов неизвестного возраста, тем самым эти даты могут и не иметь независимой проверки. Получаемые парадоксы можно объяснить следующими недостатками теории Либби (эти и иные факторы проанализированы в книге М.М. Постникова «Критическое исследование хронологии древнего мира, в 3-х томах»,- М.: Крафт+Леан, 2000, в томе 1, стр. 311-318, написанной в 1978 году):

1) Непостоянство, неравномерность процентного содержания С14 в атмосфере, его неоднородное распределение. Содержание С14 зависит от космического фактора (интенсивность солнечного излучения) и земного (поступление в атмосферу «старого» углерода из-за горения или гниения древней органики, возникновения новых источников радиоактивности, колебаний магнитного поля Земли). Изменение этого параметра на 20% влечёт ошибку в РУ-возрасте почти в 2 тысячи лет.
2) Скорость радиоактивного распада изотопов не является постоянной, - действительно, со времён Либби период полураспада С14 по официальным справочникам «изменился» на сотню лет, то есть,- на пару процентов (этому соответствует изменение РУ-возраста на полторы сотни лет). По всей видимости, значение этого периода значительно (в пределах нескольких процентов) зависит от экспериментов, в которых он определяется. А, возможно, зависит от каких-то внешних условий, полей и сил.
3) Изотопы углерода не являются вполне химически эквивалентными, и поэтому клеточные мембраны могут использовать их избирательно: некоторые абсорбировать С14, некоторые - наоборот, избегать его. Поскольку процентное содержание С14 ничтожно (один атом С14 к 10 миллиардам атомов С12), даже незначительная избирательность клетки в изотопном отношении повлечёт большое изменение РУ-возраста (колебание на 10% приводит к ошибке примерно 600 лет).
4) По смерти организма, его ткани не выходят из углеродного обмена, участвуя в процессах гниения и диффузии.

Со времени Либби физики-радиоуглеродчики научились очень точно определять содержание изотопа в образце, заявляют даже, что они способны пересчитать отдельные атомы изотопа. Разумеется, такой подсчёт возможен только для небольшого образца органической ткани, но в этом случае возникает вопрос - насколько точно этот небольшой образец представляет весь предмет? Насколько однородно содержание изотопа в нём? Ведь ошибки в несколько процентов приводят с столетним изменениям РУ-возраста.


Калибровочная шкала С14.

Признав существенное непостоянство содержание С14 в атмосфере, физики-радиоуглеродчики примерно с 70-х годов стали строить, т.н. «калибровочные шкалы» изотопа С14: по распределению изотопа в кольцах долгоживущих деревьев (американских секвой тысячелетнего возраста) было экстраполировано содержание изотопа в атмосфере за последние несколько тысяч лет. Такая шкала имеет определённый смысл для того региона, где она составлялась, но перенос её в другие регионы, на другие континенты является малообоснованным, и, скорее всего, ошибочным.
Попытки построения аналогичных шкал по короткоживущим деревьям Европы порождает иную проблему: РУ-шкала оказывается привязанной к дендрошкале региона, составленной, как указано выше, ещё менее надёжно. В итоге получается, что РУ-шкалу привязывают к произвольной и ошибочной дендрошкале, а последнюю обосновывают ссылкой на согласие с РУ-шкалой: и слепой ведёт слепого. Такого рода аргументы любят повторять российские археологи из школы Колчина.
Калибровочная шкала С14 испытывает значительную вариацию своих значений. Это привело к тому, что теперь для определения РУ-возраста радиоуглеродчикам необходимо знать интервал поиска необходимой даты, поскольку нужные значения содержания изотопа теперь могут располагаться во всех исторических тысячелетиях. Этот интервал берётся из априорных указаний традиционных историков: историки указывают подозрительный век - радиоуглеродчики выдают историкам «точную» дату, в других веках даты были бы иными. Процесс получения иных датировок на том же материале проиллюстрировал А.М. Тюрин <2>.

Все эти новшества РУ-метода пытаются снять влияние фактора 1), из предыдущих, а прочие - учёту не поддаются. В итоге, получается так, что радиоуглеродные датировки являются не более надёжными или научными, чем датировка «на глазок», по «стилю эпохи», но они используются для создания впечатления о научности традиционной хронологии, созданной средневековыми астрологами и богословами. Иной раз от историков приходится слышать даже заявления о том, что РУ-методом датированы античные монеты! Но даже если бы эти монеты были чугунными и содержали бы достаточное количество углерода, то РУ-датирование должно было бы показать не время изготовления монеты, а возраст руды (многие сотни тысяч лет). Следует думать, что многие ссылки на РУ-датирование являются таким же обманом научного мира.

Литература
1. Постников М.М. «Критическое исследование хронологии древнего мира, в 3-х томах, 1978 года»,- М.: Крафт+Леан, 2000, том 1, стр. 311-318.
2. Статьи А.М. Тюрина в Альманахе НХ №3:

Исследователи измерили содержание углерода-14 в деревьях, растущих на юге Иордании, определили их возраст и сравнили полученные датировки со стандартной шкалой метода. В результате они обнаружили расхождения в среднем на 19 лет. Относительно небольшая неточность, тем не менее, может существенно сказаться на археологических исследованиях раннебиблейской эпохи и палеоэкологических реконструкциях. Результаты изложены в журнале Proceedings of the National Academy of Sciences.

Радиоуглеродный анализ - один из основных методов датировки растений и археологических предметов с содержанием органического материала. Ученые уже давно его используют, поэтому сейчас уже выработаны стандартные шкалы для Северного и Южного полушарий, которые называются калибровочными кривыми. Они представляют собой зависимость календарного и радиоуглеродного возрастов. Эти кривые достаточно близки к прямой линии, но отражают вариации соотношения изотопов в различные эпохи.

«Мы начали проверять предположения, на которых покоится вся область радиоуглеродного датирования, - говорит ведущий автор работы Стюарт Мэннинг из Корнеллского университета в США. - Из атмосферных измерений последних 50 лет мы знаем, что содержание изотопов углерода меняется в течение года, а также понимаем, что в различных точках Северного полушария растения зачастую активно растут в разное время. Мы хотели выяснить, насколько сильно колеблется зависимость [точности радиоуглеродного датирования] от исследуемой [географической] области, и может ли это повлиять на археологическую датировку».

Материалом для исследования стали растущие на юге Иордании деревья, возраст которых известен ученым. Авторы измеряли возраст их годовых колец при помощи радиоуглеродного метода и обнаружили сдвиг на 19 лет относительно стандартной калибровочной кривой Северного полушария. В результате, утверждают ученые, многие работы по истории этого региона, который также включает современную территорию Израиля, могут опираться на неверные предположения. Например, имеет смысл перепроверить датировки раннебиблейских событий, так как использованные во многих работах калибровочные кривые просто не подходят для данной области.

Авторы применили результаты к нескольким опубликованным ранее хронологическим таблицам и выяснили, что даже небольшой сдвиг датировок может привести к изменению календарных дат, что необходимо учитывать при решении спорных вопросов истории, археологии и климата прошлого. «Наша работа должна стать началом пересмотра и переосмысления временной шкалы археологии и ранней истории южного Леванта в течение раннего библейского периода», - подытоживает Мэннинг.

Понравился материал? в «Мои источники» Яндекс.Новостей и читайте нас чаще.