Интернет-энциклопедия по электрике

Интернет-энциклопедия по электрике

» » Расчет количества фитингов для полипропиленовых труб. Шероховатость полиэтиленовых труб

Расчет количества фитингов для полипропиленовых труб. Шероховатость полиэтиленовых труб


В процессе проведения монтажных работ обогревательной или водопроводной систем необходимо произвести расчет диаметра полипропиленовой трубы. Благодаря этим расчетам можно избежать потерь тепла, а также лишних энергетических затрат. Производится этот расчет по специальным формулам.

Гидравлический расчет

  1. Во время гидравлического расчета полипропиленовых труб осуществляется определение потерь напора (давления), направленного на подавление возникающих внутри трубы гидравлических сопротивлений.
  2. Гидравлические сопротивления, помимо трубы, также могут возникать и местах, где полипропиленовая труба достаточно резко поворачивает и там, где ее диаметр расширяется или, напротив, сужается.
  3. Чтобы осуществить гидравлический расчет полипропиленовой трубы необходимо воспользоваться специальными нанограммами.
  4. Определить гидравлические потери напора в различных соединительных деталях можно по представленной таблице.

Внутренний диаметр полипропиленовой трубы

От внутреннего диаметра трубы зависит тот объем воды, который она сможет пропустить через себя за определенное время. В подавляющем большинстве случаев перед монтажом трубопровода производится расчет именно внутреннего, а не внешнего диаметра полипропиленовых труб. Если не рассчитывать проходимость и диаметр полипропиленовых труб, то, в худшем случае, периодически люди, живущие на самых верхних этажах многоэтажных домов, будут оставаться без воды.

Формула для расчета внутреннего диаметра труб

Проходимость полипропиленовой трубы можно рассчитать по формуле, указанной на рисунке, в которой:

  • Qобщ означает суммарный пиковый расход воды;
  • Pi равняется значению 3,14;
  • под V подразумевается та скорость, с которой вода течет по полипропиленовым трубам. Скорость течения воды в толстых трубах составляет от 1,5 до 2 метров за одну секунду, в тонких – от 0,7 до 1,2 метров в секунду.

Диаметр труб для частного дома

Расчет внутреннего диаметра полипропиленовых труб целесообразно делать в том случае, если водопроводная система будет построена в большом многоквартирном доме. В небольшой квартире или частном доме без таких расчетов можно легко обойтись. В данном случае будет достаточно полипропиленовых труб с диаметром 20 миллиметров.


Расчёт потерь напора воды в трубопроводе выполняется очень просто, далее мы подробно рассмотрим варианты расчёта.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

Вам посчастливилось пробурить скважину прямо около дома? Замечательно! Теперь вы сможете обеспечить себя и свой дом или дачу чистой водой, которая не будет зависеть от центрального водоснабжения. А это значит никакого сезонного отключения воды и бегания с вёдрами и тазиками. Нужно только установить насос и готово! В настоящей статье мы поможем вам рассчитать потери напора воды в трубопроводе , и уже с этими данными можно смело покупать насос и наслаждать, наконец, своей водой из скважины.

Из школьных уроков физики понятно, что вода, текущая по трубам, в любом случае испытывает сопротивление. Величина этого сопротивления зависит от скорости потока, диаметра трубы и гладкости её внутренней поверхности. Сопротивление тем меньше, чем меньше скорость потока и больше диаметр и гладкость трубы. Гладкость трубы зависит от материала, из которого она изготовлена. Трубы из полимеров более гладкие, чем стальные трубы , а также они не ржавеют и, что немаловажно, дешевле других материалов, не уступая при этом в качестве. Вода будет испытывать сопротивление, двигаясь даже по полностью горизонтальной трубе. Однако чем длиннее сама труба, тем менее значительны будут потери напора. Что ж, приступим к расчету.

Потери напора на прямых участках трубы.

Чтобы подсчитать потери напора воды на прямых участках труб использует уже готовую таблицу, представленную ниже. Значения в этой таблице указаны для труб, изготовленных их полипропилена, полиэтилена и других слов, начинающихся с «поли» (полимеров). Если же вы собираетесь установить стальные трубы, то необходимо умножить приведённые в таблице значения на коэффициент 1,5.

Данные приведены на 100 метров трубопровода, потери указаны в метрах водного столба.

Расход

Внутренний диаметр трубы, мм

Как пользоваться таблицей : Например, в горизонтальном водопроводе с диаметром трубы 50 мм и расходом 7 м 3 /ч потери будут составлять 2,1 метра водного столба для трубы из полимера и 3,15 (2,1*1,5) для трубы из стали. Как видите, всё довольно просто и понятно.

Потери напора на местных сопротивлениях.

К сожалению, трубы бывают абсолютно прямыми только в сказке. В реальной же жизни всегда есть различные изгибы, заслонки и вентиля, которые нельзя не учитывать при расчёте потерь напора воды в трубопроводе. В таблице приведены значения потерь напора в самых часто встречающихся местных сопротивлениях: колене в 90 градусов, скруглённом колене и клапане.

Потери указаны в сантиметрах водного столба на единицу местного сопротивления.

Скорость потока, м/с

Колено 90 градусов

Скруглённое колено

Клапан

Для определения v - скорости потока необходимо Q - расход воды (в м 3 /с) разделить на S - площадь поперечного сечения (в м 2).

Т.е. при диаметре трубы 50 мм (π*R 2 =3,14*(50/2) 2 =1962,5 мм 2 ; S=1962,5/1 000 000=0,0019625 м 2) и расходе воды 7 м 3 /ч (Q=7/3600=0,00194 м 3 /с) скорость потока
v=Q/S=0,00194/0,0019625=0,989 м/с

Как видно из приведённых выше данных, потери напора на местных сопротивлениях совсем незначительны. Основные потери всё-таки происходят на горизонтальных участках труб, поэтому для их уменьшения следует тщательно продумать выбор материала трубы и их диаметра. Напомним, чтобы минимизировать потери следует выбирать трубы из полимеров с максимальным диаметром и гладкостью внутренней поверхности самой трубы.

Гидравлический расчет является важной составляющей процесса выбора типоразмера трубы для строительства трубопровода . В нормативной литературе по проектированию этот ясный с точки зрения физики вопрос основательно запутан. На наш взгляд, это связано с попыткой описать все варианты расчета коэффициента трения, зависящего от режима течения, типа жидкости и ее температуры, а также от шероховатости трубы , одним (на все случаи) уравнением с вариацией его параметров и введением всевозможных поправочных коэффициентов. При этом краткость изложения, присущая нормативному документу, делает выбор величин этих коэффициентов в значительной степени произвольным и чаще всего заканчивается номограммами, кочующими из одного документа в другой.
С целью более подробного анализа предлагаемых в документах методов расчета представляется полезным вернуться к исходным уравнениям классической гидродинамики .

Потеря напора, связанная с преодолением сил трения при течении жидкости в трубе , определяется уравнением:

Где: L и D длина трубопровода и его внутренний диаметр, м; ? - плотность жидкости, кг/м3; w - средняя объемная скорость, м/сек, определяемая по расходу Q, м3/сек:

λ - коэффициент гидравлического трения, безразмерная величина, характеризующая соотношение сил трения и инерции, и именно ее определение и есть предмет гидравлического расчета трубопровода . Коэффициент трения зависит от режима течения, и для ламинарного и турбулентного потока определяется по-разному.
Для ламинарного (чисто вязкого режима течения) коэффициент трения определяется теоретически в соответствии с уравнением Пуазейля:
λ = 64/Re (2)
где: Re - критерий (число) Рейнольдса.
Опытные данные строго подчиняются этому закону в пределах значений Рейнольдса ниже критического (Re При превышении этого значения возникает турбулентность. На первом этапе развития турбулентности (3000 λ = 0,3164 Re -0,25 (3)
В несколько расширенном диапазоне чисел Рейнольдса (4000

λ = 1,01 lg(Re) -2,5 (4)

Для значений Re > 100000 предложено много расчетных формул, но практически все они дают один и тот же результат .

На рис.1 показано, как "работают" уравнения (2) - (4) в указанном диапазоне чисел Рейнольдса, который достаточен для описания всех реальных случаев течения жидкости в гидравлически гладких трубах .
Рис.1

Шероховатость стенки трубы влияет на гидравлическое сопротивление только при турбулентном потоке, но и в этом случае, из-за наличия ламинарного пограничного слоя существенно сказывается только при числах Рейнольдса, превышающих некоторое значение, зависящее от относительной шероховатости ξ/D, где ξ - расчетная высота бугорков шероховатости, м.
Труба , для которой при течении жидкости выполняется условие:

считается гидравлически гладкой, и коэффициент трения определяется по уравнениям (2) - (4).
Для чисел Re больше определенных неравенством (5) коэффициент трения становится величиной постоянной и определяется только относительной шероховатостью по уравнению:

которое после преобразования дает:

Гидравлическое понятие шероховатости не имеет ничего общего с геометрией внутренней поверхности трубы , которую можно было бы инструментально промерить. Исследователи наносили на внутреннюю поверхность модельных труб четко воспроизводимую и измеряемую зернистость, и сравнивали коэффициент трения для модельных и реальных технических труб в одних и тех же режимах течения. Этим определяли диапазон эквивалентной гидравлической шероховатости , которую следует принимать при гидравлических расчетах технических труб . Поэтому уравнение (6) точнее следует записать:

где: ξ э - нормативная эквивалентная шероховатость (Таблица 1).

Таблица 1

Данные таблицы 1 получены для традиционных на тот период материалов трубопроводов .
В период 1950-1975 годов западные гидродинамики аналогичным способом определили ξ э труб из полиэтилена и ПВХ разных диаметров, в том числе и после длительной эксплуатации. Получены значения эквивалентной шероховатости в пределах от 0,0015 до 0,0105 мм для труб диаметром от 50 до 300 мм . В США для собранного на клеевых соединениях трубопровода из ПВХ этот показатель принимается 0,005 мм . В Швеции, на основе фактических потерь давления в пятикилометровом трубопроводе из сваренных встык полиэтиленовых труб диаметром 1200 мм, определили, что ξ э = 0,05 мм . В российских строительных нормах в случаях, относящихся к полимерным (пластиковым) трубам , их шероховатость либо совсем не упоминается , либо принимается: для водоснабжения и канализации - "не менее 0,01 мм" , для газоснабжения ξ э = 0,007 мм . Натурные измерения потерь давления на действующем газопроводе из полиэтиленовых труб наружным диаметром 225 мм длиной более 48 км показали, что ξ э Вот, пожалуй, и все, чем положения классической гидродинамики могут помочь при анализе нормативной документации, посвященной гидравлическому расчету трубопроводов . Напомним, что

Re = w D/ν (7)

где: ν - кинематическая вязкость жидкости, м2/сек.

Первый вопрос, который следует решить раз и навсегда - являются ли , имеющие, как показано выше, уровень шероховатости, от ≈ 0,005 мм для труб малых диаметров, до ≈ 0,05 мм для труб большого диаметра , гидравлически гладкими.
В Таблице 2 для труб различных диаметров по уравнениям (5) и (7) определены значения расходных скоростей движения воды при температуре 20°С (ν = 1,02*10-6 м2/сек), выше которых труба не может считаться гидравлически гладкой. Для полимерных (пластиковых) труб шероховатость плавно повышали с увеличением диаметра, как это оговорено выше; для новых и старых стальных труб - принимали минимальные значения из Таблицы 1. Отметим, что критические скорости в старых стальных трубопроводах в 10 раз ниже, чем в новых, и их шероховатость не может не учитываться при расчете гидравлических потерь напора.

Таблица 2

Для трубопроводов внутри зданий предельными значениями скорости воды в трубопроводах являются:
для отопительных систем - 1,5 м/сек ;
для водопровода - 3 м/сек .
Для наружных сетей мы таких ограничений в нормативной документации не нашли, но если оставаться пределах, определенных таблицей 2, можно сделать однозначный вывод - полимерные (пластиковые) трубы являются, безусловно, гладкими.
Оставляя предельное значение скорости, w = 3 м/сек, определим, что при течении воды в трубах диаметром 20-1000 мм число Рейнольдса лежит в диапазоне 50000-2500000, то есть для расчета коэффициента трения течения воды в вполне корректно использовать уравнения (3) и (4). Уравнение (4) вообще охватывает весь диапазон режимов течения.
В нормативной документации, посвященной проектированию систем водоснабжения , уравнение для определения удельных потерь напора (Па/м либо м/м) дается в развернутом относительно диаметра трубы и скорости движения воды виде:

где: К - набор всевозможных коэффициентов, n и m - показатели степеней при диаметре D, м и скорости w, м/сек.
Уравнение Блязиуса (3), наиболее удобное для подобного преобразования, для воды при 20°С при 3000

но оно действует при Re 100000 следует пользоваться модификацией уравнения (4).
В ISO TR 10501 для пластмассовых труб при 4000

Для диапазона чисел Рейнольдса 150000

СНиП 2.04.02-84 без указания диапазона режима течения дает уравнение, которое подстановкой соответствующих коэффициентов для пластмассовых труб принимает вид:

которое после проверки и выполнения различных условий, для ряда режимов течения воды в шероховатых трубах (b ≥ 2) превращается в уравнение:

λ = 0,5 /(lg(3,7D/ ξ)) 2

что в точности совпадает с уравнением (61)

Обозначения в уравнении (12) здесь не расшифровываем, потому что они многоступенчато зависят одно от другого и с трудом понимаются из текста оригинала.

Таким образом, с небольшими вариациями коэффициентов и показателей степеней уравнения (9 - 12) базируются на классических уравнениях гидродинамики.
Приняв скорость движения воды в трубопроводе w=3 м/сек, рассчитаем потери давления J, м/м (табл.3, рис.2) в полимерных (пластиковых) трубах разных диаметров по четырем рассмотренным выше подходам. При расчетах по СП 40-102-2000 (уравнение 12) уровень шероховатости в зависимости от диаметра труб принимался как в таблице 2.



Рис. 2


Как видно из табл.3 и рис.2, расчеты по ISO TR 10501 практически совпадают с расчетами по уравнениям классической гидродинамики, расчеты по российским нормативным документам, также совпадая между собой, дают несущественно завышенные по сравнению с ними результаты. Непонятно, почему составители СП 40-102-2000 в части гидравлического расчета полимерного водопровода отошли от рекомендаций более раннего документа СНиП 2.04.02-84 и не учли рекомендаций международного документа ISO TR 10501.
Уравнения (9 - 11) охватывают все реально возможные режимы течения воды в гладких трубах и удобны тем, что легко могут быть решены относительно любой входящей в них величины (J, w и D). Если это сделать относительно D:

где: К - коэффициент, а n и m - показатели степеней при диаметре D и скорости w, то можно предварительно выбрать диаметр трубопровода по рекомендованной для данного типа сети скорости w, м/сек, c учетом допустимых потерь напора для данной протяженности трубопровода (∆ Нг = J*L, м).

Пример:
Определить внутренний диаметр пластмассового трубопровода длиной 1000 м, при wмакс = 2 м/сек и ∆ Нг = 10 м (1 бар), то есть J = 10/1000 = 0,01 м.
Выбрав, например, коэффициенты уравнения (11), получаем:

При этом расход составит Q=460 м3/час. Если полученный расход велик или мал, достаточно скорректировать значение скорости. Взяв, например, w=1,5 м/сек, получим D=0,188 м и Q=200 м3/час.
Расход в трубопроводе определяется потребностями потребителя и устанавливается на этапе проектирования сети. Оставив этот вопрос проектировщикам, сравним удельные потери давления в стальном (новом и старом) и пластмассовом трубопроводах при равных расходах для различных диаметров труб .

Как видно из таблицы 4, учитывая неизбежное старение стальной трубы в процессе эксплуатации, для труб малых и средних диаметров полиэтиленовую трубу можно выбирать на одну ступень наружного диаметра меньше. И только для труб диаметром 800 мм и выше, вследствие относительно меньшего влияния абсолютной эквивалентной шероховатости на потери напора, диаметры труб нужно выбирать из одного ряда.

Литература.
1. Н.З.Френкель, Гидравлика, Госэнеогоиздат, 1947.
2. И.Е.Идельчик, Справочник по гидравлическому сопротивлению фасонных и прямых частей трубопроводов , ЦАГИ, 1950.
3. L.-E. Janson, Plastics pipes for water supply and sewage disposal. Boras, Borealis, 4th edition, 2003.
4. ISO TR 10501 Thermoplastics pipes for the transport of liquids under pressure - Calculation of head losses.
5. СП 40-101-2000 Проектирование и монтаж трубопроводов из полипропилена "рандом сополимер".
6. СНиП 41-01-2003 (2.04.05-91) Отопление, вентиляция и кондиционирование.
7. СНиП 2.04.01-85 Внутренний водопровод и канализация зданий.
8. СНиП 2.04.02-84 . Наружные сети и сооружения.
9. СП 40-102-2000 Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов.
10. СП 42-101-2003 Общие положения по проектированию и строительству газораспределительных систем из металлических и полиэтиленовых труб .
11. Е.Х.Китайцева, Гидравлический расчет стальных и полиэтиленовых газопроводов , Полимергаз, №1, 2000.


За последние десять лет полипропиленовые трубы стали пользоваться популярностью, как у профессиональных строителей, так и у тех людей, кто занимается обустройством своей квартиры или загородного дома. Отправляясь за покупкой, многие столкнулись с проблемой выбора изделия, так как труб из полипропилена на рынке предлагают очень много. Но, прежде всего, параметры полипропиленовых труб должны соответствовать параметрам вашей инженерной системы.

Срок службы

1. Срок службы полипропиленовых труб составляет 50 лет в системе холодного водоснабжения. В отопительной системе, а также в системе горячего водоснабжения они прослужат 25 лет, сохраняя при этом все свои изначальные характеристики.

2. Нужно знать, что максимальный срок эксплуатации труб из полипропилена зависит от правильной комбинации двух важных факторов: давления и температуры. При высокой температуре и маленьком давлении или же все наоборот, трубы могут служить долго. Это даже указывается в специальных таблицах. Но если и давление, и температура будут большими, то трубы прослужат недолго.

3. Что же сделать, чтобы трубы прослужили как можно дольше? Чтобы срок службы был максимальным, то есть, 50 лет должна быть температура не больше 60-75 градусов или же давление не больше 4-6 атмосфер. Вообще то, труба из полипропилена прослужит столько, сколько она сможет выдержать без разрушений с учетом коэффициента надежности воздействия постоянной на нее температуры и давления. И если соблюдать все эксплуатационные параметры, которые указываются в строительных нормах, трубы из полипропилена прослужат долго.

Полипропиленовые трубы и мороз

Полипропиленовые трубы могут использоваться при температуре до 40 градусов мороза. Морозостойкость у них высокая. При морозе они не потрескаются и зимой не разморозятся даже на небольшой глубине закапывания. Даже если в трубах замерзнет вода, они не разрушаются, а только немного увеличатся в размере, при оттаивании они становятся прежнего размера. Единственное, что нужно опасаться – это внешнего большого давление на трубу, так она может лопнуть. Несмотря на нормы температуры, температура горячей воды в отопительной системе может в некоторых регионах превысить указанные 95 градусов. В первую очередь это относится к регионам с резко континентальным климатом: Якутии, Дальнему Востоку и Сибири. Если температура будет 52 градуса мороза, то для обогрева зданий при такой высокой температуре воду в теплотрассах приходится нагревать намного выше точки кипения. И при этом полипропиленовые трубы могут пострадать. Поэтому вывод один: трубы из полипропилена можно смело использовать в отоплении и системе водоснабжения везде, кроме самых холодных регионов.

Шероховатость и диаметр

1. При проектировании напорной трубопроводной системы важное значение имеют ее гидравлические расчеты. По ним вычисляют диаметр труб и подбирают насосное оборудование, обеспечивающее нужный режим работы вышеуказанной системы за весь срок эксплуатации.

2. У полипропиленовых труб довольно гладкая внутренняя поверхность и маленькие гидравлические потери. Это позволяет использовать в монтаже трубы из полипропилена меньшего диаметра, чем стальные. Монтаж оказывается более экономичным и компактным.

3. Коэффициент шероховатости эквивалентной у полипропиленовых труб составляет 0,003-0,005 мм. У новых стальных труб – 0,2 мм. Поэтому становится понятно, почему при замене стальной трубы на полипропиленовую выбирают трубу с меньшим диаметром.


Гидравлический расчет обычного бытового трубопровода выполняется при помощи уравнения Бернулли:

(z 1 + p 1 /ρg + α 1 u 2 1 /2g) - (z 2 + p 2 /ρg + α 2 u 2 2 /2g) = h 1-2 -.

Для гидравлического расчета трубопровода вы можете воспользоваться калькулятором гидравлического расчета трубопровода .

В данном уравнении h 1-2 - потери напора (энергии) на преодоление всех видов гидравлического сопротивления, которое приходится на единицу веса перемещающейся жидкости.

h 1-2 = h t + Σh м.

  • h t - потери напора на трение по длине потока.
  • Σh м - суммарные потери напора на местном сопротивлении.

Потери напора на трение по длине потока вы можете рассчитать по формуле Дарси-Вейсбаха

h t = λ(L/d)(v 2 /2g).

  • где L -длина трубопровода.
  • d -диаметр участка трубопровода.
  • v - средняя скорость перемещения жидкости.
  • λ -коэффициент гидравлического сопротивления, который в общем случае зависит от числа Рейнольдса (Re=v*d/ν), и относительной эквивалентной шероховатости труб (Δ/d).

Значения эквивалентной шероховатости Δ внутренней поверхности труб разных типов и видов указаны в таблице 2. А зависимости коэффициента гидравлического сопротивления λ от числа Re и относительной шероховатости Δ/d указаны в таблице 3.

В случае, когда режим движения ламинарный, то для труб некруглого сечения коэффициент гидравлического сопротивления λ находится по персональным для каждого отдельного случая формулам (табл. 4).

Если турбулентное течение развито и функционирует с достаточной степенью точности, то при определении λ можно использовать формулы для круглой трубы с заменой диаметра d на 4 гидравлических радиуса потока R г (d=4R г)

R г = w / c .

  • где w- площадь «живого» сечения потока.
  • c- «смоченный» его периметр (периметр «живого» сечения по контакту жидкость - твердое тело)

Потери напора в местных сопротивлениях можно определить по форм. Вейсбаха

h м = ζ v 2 /2g.

  • где ζ - коэффициент местного сопротивления, который зависит от конфигурации местного сопротивления и числа Рейнольдса.

При развитом турбулентном режиме ζ = const, что позволяет ввести в расчеты понятие эквивалентной длины местного сопротивления L экв. т.е. такой длины прямого трубопровода, для которого h t = h м. В данном случае потери напора в местных сопротивлениях учитываются тем, что к фактической длине трубопровода добавляется сумма их эквивалентных длин

L пр =L + L экв.

  • где L пр - приведенная длина трубопровода.

Зависимость потерь напора h 1-2 от расхода называется характеристикой трубопровода .

В случаях когда движение жидкости в трубопроводе обеспечивает центробежный насос, то для определения расхода в системе насос - трубопровод выстраивается характеристика трубопровода h =h(Q) с учетом разности отметок ∆z (h 1-2 + ∆z при z 1 < z 2 и h 1-2 - ∆z при z 1 >z 2) накладывается на напорную характеристику насоса H=H(Q) , которая приведена в паспортных данных насоса (смотреть рисунок). Точка пересечения таких кривых указывает на максимально возможный расход в системе.

Сортамент труб.

Наружный диаметр d н, мм

Внутренний диаметр d вн, мм

Толщина стенки d. мм

Наружный диаметр d н, мм

Внутренний диаметрd вн, мм

Толщина стенки d, мм

1. Трубы стальные бесшовные общего назначения

3. Трубы насосно-компрессорные

А. Гладкие

2. Трубы нефтепроводные и газопроводные

Б. Трубы с высаженными концами

Значения коэффициентов эквивалентной шероховатости ∆ для труб из различных материалов.

Группа

Материалы, вид и состояние трубы

∆*10 -2 . мм

1. Давленые или тянутые трубы

Давленые или тянутые трубы (стеклянные, свинцовые, латунные, медные. цинковые. Оловянные, алюминиевые, никелированные и пр.)

2. Стальные трубы

Бесшовные стальные трубы высшего качества изготовления

Новые и чистые стальные трубы

Стальные трубы, не подверженные коррозии

Стальные трубы, подверженные коррозии

Стальные трубы сильно заржавевшие

Очищенные стальные трубы

3. Чугунные трубы

Новые черные чугунные трубы

Обыкновенные водопроводные чугунные трубы, б /у

Старые заржавленные чугунные трубы

Очень старые, шероховатые. заржавленные чугунные трубы с отложениями

4. Бетонные, каменные и асбоцементные трубы

Новые асбоцементные трубы

Очень тщательно изготовленные трубы из чистого цемента

Обыкновенные чистые бетонные трубы

Зависимость коэффициента гидравлического сопротивления от числа Рейнольдса и эквивалентной шероховатости труб.

Режим (зона)

Коэффициент гидравлического сопротивления l

Ламинарный

Reкр(Re кр »2320)

64/Re (форм. Стокса)

Турбулентный:

Зона перехода турбулентного движения в ламинарное

2.7/Re 0. 53 (форм. Френкеля)

Зона гидравлически гладких труб

Reкр < Re<10 d/D

0.3164/Re 0.25 (форм. Блазиуса)

1/(1.8 lg Re - 1.5) 2 (фор.Конакова при Re<3*10 6)

Зона смешанного трения или гидравлически шероховатых труб

0.11 (68/Re + D/d) 0.25 (форм. Альтшуля)

Зона квадратичного сопротивления (вполне шероховатого трения)

1/(1.14 + 2lg(d/D)) 2 (форм. Никурадзе)

0.11(D/d) 0.25 (форм. Шифринсона)

  • ∆ - абсолютная шероховатость трубы.
  • d. r - диаметр. радиус трубы. соответственно.
  • ∆/d - относительная шероховатость трубы.

Основные формулы для ламинарного режима в трубах.

Форма поперечного сечения

Гидравлический радиус. Rг

Число РейнольдаRe

Коэффициент гидравлического сопротивления

Потери напора. h

128νQL/πgD 4 .

64/Re*(1 - d/D)2/(1 + (d/D)2 + (1 - (d/D)2)/ln(d/D))

128νQL/πg(D 4 - d 4 + (D 2 - d 2) 2 /ln(d/D)).

320νQL/ga 4 √3

4vab/((a + b)ν)

64/Re*8(a/b)/((1 + a/b) 2 K)

4νQL/a 2 b 2 gK.
Коэффициент K определяется в зависимости от отношенияa/b (смотрите в таблице)

Коэффициенты некоторых местных сопротивлений z.

Вид местного сопротивления

Схема

Коэффициент местного сопротивления z

Внезапное расширение

(1 - S 1 /S 2) 2 , S 1 = πd 2 /4, S 2 = πD 2 /4.

Выход из трубы в резервуар больших размеров

Постепенное расширение (диффузор)

  1. Если a<8 0 .

0.15 - 0.2 ((1 - (S 1 /S 2) 2)

  1. Если 8 0 0.

sin α (1 - S 1 /S 2) 2

  1. Если a>30 0

(1 - S 1 /S 2) 2

Вход в трубу:

С острыми краями

С закругленными краями